
1

���������	
��	������������	��
JÖRG ROTH

���������	
��
�����
�����
�����
������	

Joerg.Roth@Fernuni-hagen.de
Tel. +49 2331 987 2134
Fax. +49 2331 987 390

��������� Designing systems for mobile scenarios covers a wide range of issues, ranging from

mobile networking to user interface design for mobile devices. Mobile applications often run dis-

tributed on several connected devices, used by many users simultaneously. Considering all issues

related to mobile scenarios, a designer might be overwhelmed. As a solution, we propose a specific

kind of design patterns we call �������	
��������. Mobility patterns have been derived from

successful mobile applications and allow a designer to reuse design elements as building blocks.

After describing the idea of mobility patterns, we give a brief overview of some patterns we

identified so far.

��	������
������
����������
������
������������
�����������
�������
������

��������

Introduction

Mobile computing fundamentally differs from desktop computing. Mobile de-

vices, e.g. PDAs, mobile phones and digital cameras have, compared to desktop

computers low computational power, small memory and often no mass storage.

Communication links to other mobile devices or to a stationary network are usu-

ally wireless, thus often unstable with low bandwidth.

These aspects highly influence how users interact with mobile systems. Often,

users interacting with a mobile system interact with other users (using, e.g., mo-

bile phones). In contrast to traditional applications, users often interact with more

than one computer or device at the same time. Having, e.g., a PDA browsing the

Internet, a user may have to set up a wireless connection using a mobile phone.

Patterns

Having several users and several devices in a system design, a designer has to con-

sider several problem areas. To give some examples:

• A single application has to be developed in a distributed manner, i.e. parts

have to be identified which run independently on different devices.

• Due to the poor availability, bandwidth and reliability of mobile connec-

tions, we have to address network problems.

2

• Security (e.g., privacy, integrity and authenticity) is an important issue,

since data in mobile scenarios are often confidential data [7].

• Designing user interfaces for mobile devices, especially for heterogeneous

environments, we have to consider the special user requirements as well

as the capabilities of the involved devices [2,7].

Often, a design focuses on a specific problem area and neglects others. Especially

in the complex field of mobile computing, neglecting problems can cause an entire

design to fail. On the other hand, taken into account all issues in early design

stages may overwhelm a designer or a design team.

As a possible solution, we propose a tool successfully used in different scenarios:

������
��������. Patterns are derived from successful software designs and can be

reused as building blocks for new designs. In our approach, we use a specific kind

of design patterns we call �������	
��������. Mobility patterns cover problem areas

we find very often in mobile scenarios. Related patterns can be grouped together

to �������
������� using a pattern hierarchy (figure 1). The white boxes represent

the patterns, where the grey boxes represent pattern classes.

0RELOH6HUYLFH

ServiceLocation ServiceUsage

0RELOH'DWD

Caching Virtual Presence

Synchronisation

8VHU,QWHUIDFH

VirtualWindow

ProxyPushObject

RequestObject

Discovery

Advertisement

Trading

6HFXULW\

Encryption

Authentification

Anonymising

Challenging Certification

CoupledUI

0RELOH&RGH

MobileAgent CannedCode

6WUHDPLQJ

ContinuousData ContinuousMedia

ConversationalOneWayStream

Sensing

0RELOLW\

3DWWHUQV

Fig 1. The pattern hierarchy

Mobility patterns are not only applicable for mobile scenarios but some pattern

appear very often in mobile application projects, thus are good candidates for new

projects.

Example Patterns

To describe patterns, we followed established description formats (e.g. [3]). Each

description contains the sections: ������
!���, "	������, #����$�, %�����, "���&

3

����, #����'������, ($������,)������
 �������
and #������. From the proposed

description used in object-oriented software development, we replaced the section

*������������� by ($������. It is difficult to give a tangible implementation for a

specific mobility pattern. Instead, a list of good examples is more meaningful. In

addition we added the section #������, which indicates, how a pattern is integrated

into the pattern hierarchy. Pattern classes give a designer additional structuring

information, thus problems and solutions related to a specific pattern can be clas-

sified more easily. Compared to more formal approaches (e.g. [1]), mobility pat-

terns have a strongly informal characteristic. To give an impression of mobility

patterns, we present two patterns: "	��+���������� and ��$. Note that in this

paper, we can only give a brief summary of the patterns. Original pattern descrip-

tions need several pages.

���������������������	����	����������

	
������ Identical data is stored on different devices or computers, which are

weakly connected. Several users apply data changes to different devices, often si-

multaneously.

���������Consider two users carrying around databases stored in their PDAs,

which have been originally copied from a central server. While travelling, they are

only rarely connected to their home database.

��������Identical data stored at different locations tends to run ���
��
�	�� when

users apply modifications on their locally stored data and device are only rarely

connected.

	���������Each device or computer provides a �	��
������ which

• keeps track of modifications applied to local data;

• exchanges modifications with corresponding databases on other devices

whenever they reconnect;

• detects conflicts and realises a conflict resolution strategy.

��������������This pattern can be used whenever data stored on different de-

vices has not to be strongly up to date. However, users should be aware that other

users could change the same data simultaneously, which may cause conflicts later.

Since connected devices have to effectively compare their local changes, only

data, which can be stored in tables or lists, can be used with this pattern. Ideally,

changes are logged for every field in a record. Weakly structured data can be

compared record by record, which increases the probability for unwanted

conflicts. This pattern is not suitable for continuous data such as audio or video.

����������

• SyncML (http://www.syncml.org) is a framework for data synchronisation

in mobile scenarios.

4

• Palms Hotsync allows a user to synchronise a palm device with one ore

more desktop PCs.

• QuickStep [7, 8] synchronises data between mobile devices and stationary

servers, as well as between stationary servers among themselves.

������������������VirtualPresence

���������MobileData

�����������������	�����������

	
�������A device has not the capability to perform a requested task. It connects

to another device with higher computational power, which acts as a delegate.

���������Consider a user browsing the web with a handheld device. The screen

resolution of such a device is currently very poor, thus, elements such as graphics

and tables are difficult to display. In addition, rendering complex elements re-

quires many computational resources, which are often unavailable on such a

device.

��������A user who requests a specific task

• wants to safe network bandwidth,

• wants to safe computational resources (e.g. memory) on the local device,

• expects appropriate input/output behaviour according to the locally avail-

able capabilities.

	���������The device does not connect directly to the required service end point,

but asks another device or computer to perform these tasks. This other computer,

called the ���$,

• accepts service requests from other devices,

• connects to the actual service provider and performs the requested tasks,

• processes the results and

• sends them back to the initiating device.

��������������This pattern is a general pattern and useful in various mobile sce-

narios. Very often, the devices used by the end-users have only poor capabilities.

Nevertheless, users want to execute demanding tasks. In this pattern, there are two

crucial points:

• the proxy itself: in case of failure, tasks execution is disabled, even if the

requesting device and the service provider are on-line;

• the communication link between the requesting device and proxy: if this

link is broken, the task cannot be performed, even if the proxy has suc-

cessfully executed the task.

Obviously, the proxy has to have more or other capabilities than the end-user’s

device. As the proxy provides a specific service, a mobile device must be able to

find the proxy inside the network. This leads to the following consequences:

5

• A proxy has to have a fixed network address or the mobile device can,

with help of a service discovery mechanism, resolve the network address.

• The proxy has to be on-line whenever a mobile devices requests services.

Currently, a proxy is usually a traditional workstation, not a mobile device.

���������

• ProxyWeb (http://www.intellisync.com) allows a handheld user to browse

the web without struggling with device limitations. The proxy pre-

processes web pages, downscales graphics and pre-computes the

appropriate layout. As a result, the amount of data transferred to the

handheld devices is drastically reduced and the devices are relieved from

heavy rendering tasks.

• PocketDreamTeam is the PalmOS version of the groupware platform

DreamTeam [6]. Since PalmOS does not provide some services necessary

to run the full DreamTeam platform, PocketDreamTeam uses a proxy,

which performs specific tasks. As a result, the PocketDreamTeam pro-

gram is very small (some Kbytes) compared to the original DreamTeam

platform (some hundreds Kbytes).

������������������PushObject, RequestObject

���������ServiceUsage, MobileService

More Mobility Patterns

Table 1 lists some more mobility patterns we identified so far. Due to the limited

space, only the brief synopsis and an overview of examples are presented.

Table 1. A list of more mobility patterns

�������� 	
������ ��������
VirtualPresence Pieces of data are virtually present to other devices

and can be accessed or modified according to the
host’s access rules.

Windows CE remote file
access,
Coda [4]

RequestObject One device requests a specific object (e.g. a web
page) from another device.

WAP

PushObject One device sends a specific object without request. SMS, OBEX
OneWayStream One-way transmission of audio or video data. Video on demand,

UMTS
Conversational Two-way transmission of audio or video data. GSM, DECT,

Bluetooth audio
VirtualWindow One device presenting a window or desktop of

another device or computer.
Pebbles [5],
PalmVNC

CannedCode One device sends code, which is executed on
another device. The code has not to be executable
on the sender’s device.

WMLscript,
web filters

Sensing One device receives continuous sensor data (e.g.
location) from other devices.

GPS

6

Benefits

Using mobility patterns has many advantages. Primarily, patterns are a tool to

describe designs. Using the proposed pattern names, a designer can precisely ex-

press which building blocks are used for a specific system, thus misunderstanding

is more unlikely.

As described above, mobile applications cover a wide range of issues. Designers

tend to ’abstract away’ or forget consequences of specific design aspects, thus pos-

sibly build systems which are not runnable. As a second benefit, patterns come

along with a list of implications and consequences. A designer is clear about the

pros and cons of a specific pattern.

As a third benefit, patterns allow a designer to reuse successful designs. Reusing

software on lower levels, with e.g., software components, fail due to the hetero-

geneity of involved networks and devices. With mobility patterns, at least the de-

sign of a successful application can be reused.

The current pattern hierarchy does not claim to be complete. In the future we want

to complete our collection of mobility patterns. For this, we analyse existing

mobile computing applications and frameworks.

�����������

[1] Borchers J.: A pattern approach to interaction design, Conference proceedings on Designing interactive

systems: processes, practices, methods, and techniques Aug. 17 - 19 2000, Brooklyn, NY United States,

369-378

[2] Calvary G., Coutaz J., Thevenin D.:A Unifying Reference Framework for the Development of Plastic

User Interfaces, 8th IFIP Working Conference on Engineering for Human-Computer Interaction

(EHCI’01), Toronto, Canada, May 11-13 2001, in press

[3] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable Object-Oriented

Software, Addison Wesley, 1995

[4] Kistler J. J., Satyanarayana M.: Disconnected Operation in the Coda File System, ACM Transaction on

Computer Systems, Vol. 10, No. 1, Feb. 1992, 3-25

[5] Myers B. A., Stiel H., Gargiulo R.: Collaboration Using Multiple PDAs Connected to a PC,

Proceedings of the ACM 1998 conference on Computer supported cooperative work, 1998, 285-294

[6] Roth J.: DreamTeam - A Platform for Synchronous Collaborative Applications, AI & Society (2000)

Vol. 14, No. 1, Springer London, March 2000, 98-119

[7] Roth J., Unger C.: Using handheld devices in synchronous collaborative scenarios, Second

International Symposion on Handheld and Ubiquitous Computing 2000 (HUC2K), Bristol (UK), Sept.

25-27 2000, LNCS 1927, Springer, 187-199

[8] Roth J.: Information sharing with handheld appliances, 8th IFIP Working Conference on Engineering

for Human-Computer Interaction (EHCI’01), Toronto, Canada, May 11-13 2001, in press

