
THE RESOURCE FRAMEWORK FOR MOBILE APPLICATIONS
Enabling Collaboration Between Mobile Users

Jörg Roth
Computer Science Department, University of Hagen, 58084 Hagen, Germany

Email: Joerg.Roth@Fernuni-hagen.de

Keywords: Mobile Applications, Collaborative Applications, Application Framework, Development Platform

Abstract: Mobile devices are getting more and more interesting for several kinds of field workers such as sales
representatives or maintenance engineers. When in the field, mobile users often want to collaborate with
other mobile users or with stationary colleagues at home. Most established collaboration concepts are
designed for stationary scenarios and often do not sufficiently support mobility. Mobile users are only
weakly connected to the communication infrastructure by wireless networks. Small mobile devices like
PDAs often do not have sufficient computational power to handle effortful tasks to coordinate and synchro-
nize users. They have for example very limited user interface capabilities and reduced storage capacity. In
addition, mobile devices are subject to other usage paradigms like stationary computers and often turned on
and off during a session. In this paper, we introduce a framework for mobile collaborative applications
based on so-called resources. The resource framework leads to a straightforward functional decomposition
of the overall application. Our platform Pocket DreamTeam provides a runtime infrastructure for applica-
tion based on resources. We demonstrate the resource concept with the help of two applications built on top
of the Pocket DreamTeam platform.

1 INTRODUCTION

Software which enables collaboration between users,
so-called groupware, allows users to cooperate even
when they are geographically distributed. Group-
ware plays an essential role for shared document
editing or cooperative software development. Field
workers can use synchronous groupware to discuss
shared documents such as manuals or service
instructions with their colleagues at home. In this
paper, we focus on synchronous collaboration,
where users at different locations work together at
the same time. Groupware platforms help to de-
crease the development costs for a synchronous
groupware drastically as they take over a number of
tasks of synchronous sessions. As a result, an appli-
cation developer can concentrate on application-spe-
cific details. As development cycles are very short,
we can apply rapid prototyping concept and involve
the end-user very early in the design process.
A groupware platform usually covers three areas
(Roseman & Greenberg, 1996; Dewan & Choudhary
1992):
– an application framework provides a frame for

the application development;

– a runtime system offers services such as group,
user and session management at runtime;

– a number of interfaces, abstractions and objects
allow the developer to use platform services and
hide implementation details.

If end-users are mobile, some established concepts
of existing platforms are not longer applicable. Such
concepts often depend on stationary workstations
with high computational power, comfortable user
interfaces and reliable, broad-banded networks. In
this paper, we introduce an application framework,
which was especially designed for mobile users in
synchronous sessions. For our approach, we made
the following assumptions:
– Synchronous sessions have both mobile as well

as stationary participants.
– Mobile participants use mobile devices like

PDAs or handhelds as shown in fig. 1. In princi-
ple, we could consider notebooks, but their com-
putational power and interface capabilities can
be compared to stationary PCs. Therefore note-
book computers are not discussed here.

– The network connections of the mobile devices
use wireless communication technologies. In our
test environment, we use Wireless LAN (IEEE
802.11b) but also mobile phone networks such
as GSM or UMTS as well as wireless personal

area networks (e.g. Bluetooth, IrDA) are possi-
ble. We assume the existence of a stationary core
network.

– The support of stream media (e.g. audio and
video) is not object of this work. We assume that
there is a corresponding communication channel
for voice transmission, e.g. based on a mobile
phone network.

2 RELATED WORK

Creating groupware platforms for synchronous
teamwork has a long tradition. The platforms often
are significantly different regarding the means of
expression and abstractions for groupware tasks.
Habanero (Chabert et al., 1998) for example distrib-
utes user events, synchronized by a central server.
Groupkit (Roseman & Greenberg, 1996) uses a cen-
tral server for the session management only, appli-
cations run replicated. The ALV model (Hill et al.,
1993) allows the developer the express consistency
conditions between the data model and the user
interface. Many platforms base on multi-user vari-
ants of MVC (Graham, 1996; Schuckmann et al.,
1996). A number of additional models, particularly
PAC*, are based on the PAC model (Coutaz, 1997).
All aforementioned models and platforms take an
idealized view on networks and involved computer
and concentrate on issues of user computer interac-
tion. Mobility of users particularly remains uncon-
sidered. Some newer platforms weaken the idea of

strong synchronous cooperation to express mobility
issues. QuickStep (Roth & Unger, 2001) introduces
the idea of relaxed synchronous collaboration when
mobile participants are loosely coupled to the com-
munication infrastructure and often disconnected
from other participants. Further platforms like Sync
(Munson & Dewan, 1997), Coda (Kistler &
Satyanarayana, 1992) or Rover (Joseph et al., 1997)
concentrate on conflict resolution of concurrent data
accesses in mobile environments.

3 POCKET DREAMTEAM

To examine the consequences of end-user mobility
in synchronous group environments, we extended
our groupware platform DreamTeam (Roth, 2000)
for mobile usage. DreamTeam first was designed for
stationary users such as personal of a company,
which either work at their office or are connected by
modem connections from home. With the platform
extension Pocket DreamTeam, we now want to
support mobile users. Pocket DreamTeam extends
the runtime system, the development environment
and the application framework. Before we present
the mobile extension, we briefly outline the station-
ary variant of DreamTeam.
DreamTeam is based on a completely decentralized
architecture, i.e. apart from the users' workstations
or PCs no further computers (e.g. servers) are
needed. This architecture is ideal for a huge number
of scenarios, where a central server is too cost-inten-
sive or inappropriate for the intended task.
The runtime system of DreamTeam offers several
services for the coordination of the participants,
group and user profile management, session man-
agement and announcement services. Pre-defined
elements to achieve group awareness (e.g. partici-
pant lists, distributed mouse pointers or overview
windows) can be integrated into the application with
view lines of code. DreamTeam applications are
developed in Java. A class library of approx. 200
Java classes supports the developer.

3.1 The Stationary Application
Model

Applications under DreamTeam are developed ac-
cording to the DreamTeam Resource Model (DRM).
Applications consist of an application frame, a set of
resources and a user interface. The application
frame links together all other components and pro-
vides an interface for the runtime system. With this
interface, the runtime system can initialise, start and
stop applications. In addition, the system can start

Fig. 1: PDA with a Collaborative Application

applications in private mode. A user can for example
prepare documents for a collaborative session pri-
vately.
Resources represent the shared state of an applica-
tion. Resources can for example be the content of
shared web pages, shared paragraphs of text docu-
ments or diagram elements of a shared diagram.
Resources both provide the data as well as the nec-
essary functions for collaborative processing.

Resources have three interfaces (fig. 2a):
– The internal interface is the method interface,

which a resource provides by its implementation
as a Java class. All application objects can use
this interface according to traditional method call
mechanisms of Java.

– An external interface is used to communicate to
corresponding resources on other computers by
so-called inter-site calls. These calls are method
calls which are executed synchronously on all
corresponding replicated resources. The devel-
oper indicates inter-site calls in the source code
by a certain keyword. The runtime system uses
the reflection API of Java to invoke replicated
method calls.

– The system interface: a resource must offer ser-
vices that make it possible for the runtime sys-
tem to get control over the resource. The runtime
system can transmit the status of a resource to
latecomers automatically or maintain consis-
tency during synchronous state changes initiated
by different users.

Fig. 3 presents the architecture of DreamTeam ap-
plications. This architecture has several advantages.
On each site runs a complete set of application
instances. All data is available locally, thus an appli-
cation is still runnable in case of network problems.
Inside a local application instance, resources can be
used like other object, thus an application developer
deals with established paradigms for software devel-
opment. Not only several applications can be exe-
cuted simultaneously. It is also possible to open
more than one instance of a single application inside
a session.

The external interface connects a resource with its
corresponding resources on other peers. Thus, a spe-
cific resource and its communication capabilities can
be developed without the knowledge of other
resource. This leads to a modular software architec-
ture.
Via the system interface the runtime system gets the
necessary control over the resources. The developer
does not have to take care of the distribution of
shared data, the support of latecomers, the
synchronization of accesses etc. Particularly the
complex area of communication is completely hid-
den from developer.
The resource model represents a flexible framework
with covers different other application models such
as MVC, PAC or ALV. Resources are not restricted
by their complexity. Resources can be built up by
other resources and thus represent small applications
inside an application (fig. 2b). Hierarchically built
resources form the basis of the component concept
TeamComponents (Roth & Unger, 2000).

3.2 Mobile Users

The mobility of participants leads to a number of
problems, which have far-reaching effects on the
runtime environment, on the application framework
and on the application development.
– Mobile devices have reduced capabilities regard-

ing the user interface, have a low size and screen
resolution and no or only a rudimentary key-
board. Usual interface paradigms of stationary
environments cannot be transferred directly to
mobile computers. Overlapping windows, icons,
drag and drop, context menus etc., are not suit-
able for devices with small screens. Particularly
the concept of direct manipulation is problematic
(Kristoffersen & Ljungberg, 1999). To attain the
overview on small displays, special dialog wid-
gets and design guidelines were developed

D
re

am
T

ea
m

Resources

User
Interface

A
pp

lic
at

io
n

Inter-site
Calls

...

D
re

am
T

ea
m

Resources

User
Interface

A
pp

lic
at

io
n

...

D
re

am
T

ea
m

Resources

User
Interface

A
pp

lic
at

io
n

...

Network

Fig. 3: Stationary Applications with DreamTeam

Fig. 2: DreamTeam Resouces

Inter-site
Calls

Local Calls

Resource
Body

E
xternal Interface

Internal Interface

S
ys

te
m

 In
te

rf
ac

e

Other Local Ressources, User Interface

D
re

am
T

ea
m

 R
un

tim
e

S
ys

te
m

E
xternal Interface

Internal Interface

S
ys

te
m

 In
te

rf
ac

e

a) DreamTeam Resource b) Hierachical Resource

which are significantly different from those of
the traditional computers.

– Usually, mobile devices have a mobile power
supply. Battery lifetime still is a limiting factor.
If a device is continuously switched on, current
batteries often only have power for some hours.
The mobile device is therefore turned off most of
the time or is in a power saving mode with re-
duced activity.

– Mobile devices are usually connected wirelessly
to a network. Wireless networks have poor char-
acteristics regarding bandwidth, latency time and
reliability.

– Finally, technical properties of mobile devices
have to be taken into account, which are low
processor performances, small memory and no
or only rudimentary file systems. Operating sys-
tems of mobile devices offer, compared to desk-
top operating systems, only a low amount of ser-
vices.

Although mobile devices have limited capabilities,
end-users expect very short response times of the
applications, even shorter as for desktop applica-
tions. Bey et al. (2001) specify a maximum response
time of one second for handheld applications. Fur-
thermore, users expect to be able to turn the mobile
device off any time and continue the work with the
current state later. This usage is significantly differ-
ent from usage of stationary computers: while a
desktop computer is switched on for hours, mobile
devices are frequently turned on and off, and some-
times run only for some seconds.
The restrictions on one hand and the high demands
on the other hand lead to an architecture as repre-
sented in fig. 4.
Besides the mobile devices, we need additional com-
puters called the proxies. A proxy executes compu-
tational expensive operations of the application.

While the mobile device is turned off or the connec-
tion interrupted, the state of the session is updated
by the proxy. For any stationary session participant,
the proxy represents a permanently available contact
point. A proxy runs without user invention, thus
needs no user interface. With this architecture, arbi-
trary combinations of mobile and stationary users
can cooperate inside a session. From the view of the
network, both user types behave identically.
The general idea of a proxy is actually not very new.
The first proxy architecture designed for networked
applications was introduced by Shapiro (1986).
Systems use Shapiro's proxy architecture whenever
an application wants to use a specific service, but the
actual service location and usage conditions may
vary during runtime. Typical examples are CORBA
and Jini. With the help of a proxy, a client can use a
service without knowing the underlying protocol.
However, this proxy resides on the client device,
thus does not allow any load balancing between
client and other computers.
An example, which is closer to our intended proxy
architecture is the HTTP proxy (Fielding et al.
1997). HTTP proxies convey HTTP requests from a
web browser to a web server and in turn transfer the
requested data back to the client. As a benefit, a
proxy can cache web pages, which speeds up access
to frequently used pages. However, this kind of
proxy only works in one direction, since clients do
not offer any services themselves as in our frame-
work. In addition, such proxies are intended to
increase the network throughput, not to handle com-
plete disconnections as our proxy. As clients cannot
modify a shared state, the entire problem of consis-
tency and coherence is not relevant for such service
proxies.
At first sight, proxy computers are a break in the
decentralized architecture of DreamTeam. However,
there may be an arbitrary number of proxy com-

Mobile
Segment

Stationary
Segment

Network

Fig. 4: The Distribution Architecture of Pocket
DreamTeam

D
re

am
T

ea
m

Resources

User
Interface

A
pp

lic
at

io
n

Inter-site
Calls

...

D
re

am
T

ea
m

Resources

Benutzungs-
schnittstelle

A
pp

lic
at

io
n

...

P
oc

ke
t D

re
am

T
ea

m

Cache

Benutzungs-
schnittstelle

A
pp

lic
at

io
n

...

Network

...

P
ro

xy Resources

Mobile
Connection

Fig. 5: Applications with Pocket DreamTeam

puters in the architecture, thus the failure of a spe-
cific proxy computer particularly does not mean that
a mobile user is disconnected from the session.
Automatic recovery mechanisms switch a user to an-
other proxy without interruption.
By the introduction of proxy computers, the applica-
tion framework must be modified (fig. 5). A proxy
computer maintains the resources for one or more
mobile users. Inter-site calls are executed in the
proxy. The state therefore remains up-to-date, even
if the connection to the mobile computer is inter-
rupted. The mobile computer stores a cache entry of
every resource. The mobile application can access
the data of the resources locally without executing
long network transactions. As a result, the user can
continue the work during interruptions for a limited
time.
This comfort leads to more complex protocols for
data distribution, cache coherence and consistency
(Roth, 2002). Particularly the consistency control is
crucial. Original DreamTeam uses pessimistic con-
currency control procedures, which are suitable for
optimally connected users in stationary networks.
Pessimistic mechanisms lead to efficiently imple-
mentations and are easy to maintain by an applica-
tion developer. Among mobile, weakly connected
users however, pessimistic concurrency control
mechanisms are not suitable any longer. As a solu-
tion, Pocket DreamTeam offers a combination of a
pessimistic concurrency control for the stationary
segment and an optimistic concurrency control for
the mobile segment. The runtime system of Pocket
DreamTeam keeps the problems of the consistency
control away from the application developer as far
as possible, but the developer has to program special

procedures that support the runtime system per-
forming the optimistic concurrency control.

3.3 The Development of Mobile Col-
laborative Applications

Software development for mobile devices is in prin-
ciple more cost-intensive than the development for
stationary computers. Developing groupware which
shall run both on stationary and mobile computers
another problem arises: both the operating system
and the programming environment is differently.
DreamTeam applications are developed under Java,
Pocket DreamTeam applications run under C++.
Cross-platform approaches (e.g. Java ME) are avail-
able in principle, but in reality not acceptable due to
a number of technical limitations.
Despite these restrictions, rapid prototyping ap-
proaches should still be applicable with Pocket
DreamTeam. This goal is accomplished by a strong
reuse of source code.
Fig. 6 shows the steps to develop Pocket Dream-
Team applications. As a first step, a developer cre-
ates a stationary application variant. For this the
source codes of user interface as well as the code for
resources have to be generated.
In a second step, the developer derives the proxy
variants of the resources. For this, the developer
must generate code to support the optimistic consis-
tency control.
In the third step, the mobile resources have to be
generated. Since the mobile part is developed with
another programming language, the syntax of the
resources must be translated correspondingly. Usu-

Fig. 6: Steps to Develop Applications

Resouce
Sources

User Interface
Sources

Proxy
Resource
Sources

Java
DreamTeam

Application
Binary

Mobile
Resouce
Sources

Java
Proxy DT

Proxy
Binary

User Interface
Sources

C++
Pocket DT

Mobile
Binary

Reimplementation of equal Functions

Consistency Functions Java to C++

ally, not the complete resource has to be ported -
only the internal data structures and methods for
reading the state are necessary. Inter-site calls are
passed on to the proxy by the runtime system auto-
matically, thus no porting costs arise here. Until
now, the application developer derives the resource
sources manually. This transformation should be
done semi-automatically in future with the help of a
tool. For this, we have to extend the syntax of the
source to make use of a converter possible.
At present, the greatest overhead is arising by gener-
ating the user interface for the mobile device. User
interfaces can be taken over only regarding content.
A direct transfer is not reasonable since any target
platform has its own optimised interface toolkit,
widgets and design guidelines. Possible solutions
may be approaches based on so-called User Inter-
face Plasticity (Calvary et al., 2001), where a devel-
oper designs an interface once and derives the nec-
essary realization for the target platforms automati-
cally. Such approaches are object of intensive
research and at present have not led to any usable
tools.

3.4 Communication Issues

The communication between client and proxy plays
an important role inside our architecture. We have to
consider a number of issues:
– The communication link usually uses wireless

technologies. As described in (Bakre &
Badrinath, 1995), common transport protocols
are optimised for wired links and often have
poor performance over wireless links. In addi-
tion, wireless links do not offer the same variety
of protocols. Actual implementations of IrDA,
Bluetooth or GSM support the TCP/IP suite only
with some serious drawbacks.

– A mobile device has to look up its corresponding
proxy at runtime. The relation between proxy
and client may change, when the client moves
into another network. There exist a number of
platforms to support service discovery in un-
known environments such as SLP (Service
Location Protocol) (Veizades et al., 1997) or Jini
(Sun Microsystems, 2000). Some wireless net-
work stacks provide their own discovery mecha-
nisms, such as IAS (Information Access Service)
in IrDA or SDP (Service Discovery Protocol) in
Bluetooth.

– Client and proxy devices fundamentally differ
regarding internal data representation. To ex-
change data between both devices, we need a
machine- and language-independent encoding
and decoding scheme. Data could be encoded
using XML or Mime types.

As a communication basis for Pocket DreamTeam
which addresses these issues, we use our own com-
munication platform NKF (Network Kernel Frame-
work) (Roth, 2002b). NKF is a middleware platform
for small devices such as PDAs or digital cameras,
as well as for traditional desktop systems. It is espe-
cially designed for supporting new devices, which
do not come along with publicly available middle-
ware platforms such as CORBA or RMI. In such
cases, developers have to implement the middleware
in addition to the actual application, thus NKF is
easy to realize and does not make high demands on
target platforms. Though we implemented NKF in
Java and C, NKF does not rely on a specific pro-
gramming language paradigm. NKF is based on
network stacks such as IrDA or Bluetooth. Special
features of a specific network stack such as service
discovery or security functions can be accessed via
NKF in a protocol-independent manner. Inside NKF,
there exists a lookup and service discovery module,
which allows an application to look up services
inside the network. If the underlying network stack
comes along with its own service discovery mecha-
nism, it is used by NKF. If not, NKF provides an
own mechanism.
For encoding and decoding data, NKF offers a vari-
ety of so-called codec modules. NKF contains an
XML codec to encode standard data types such as
strings, numbers or dates. To transfer complex data
such as the session profile, Pocket DreamTeam has
to provide an additional marshalling/unmarshalling
mechanism. For this, the Pocket DreamTeam devel-
opment environment contains marshalling interfaces
for both Java as well as C++, which are compatible
to each other.

3.5 Sample Applications and Evalua-
tions

To verify the concept, two core applications of
DreamTeam as well as two cooperative applications
were ported for mobile devices with the help of
Pocket DreamTeam. It should particularly be veri-
fied, how far Pocket DreamTeam supports rapid
prototyping.
For implementing the user interfaces, the capabilities
of the different platforms were taken into account.
While icons, overlapping windows, large menus etc.
are common in desktop environments, the mobile
variant was reduced to the essential functions. We
avoid icons. Some functions of different dialog
frames were integrated into a single frame to save
time-consuming switches between windows.
The following applications were ported for the mo-
bile platform (fig. 7):

– The online list shows, which group members are
currently active, therefore are potential partners
for sessions. This list represents an essential tool
for group awareness and allows the users to cre-
ate spontaneous sessions.

– The user can plan sessions, announce them and
join sessions with the help of the session man-
agement tool.

– With a collaborative diagram application, entity
relation ship diagrams, class diagrams or flow
charts can be developed in the group.

– With a collaborative free-hand drawing tool
users can create sketches in the group, e.g. for a
brainstorming session.

Goal of these implementations was, besides testing
the entire system, to assess the costs for application
development. An experienced developer needed less
than two working weeks for all four applications in
the sum. It is problematic to quantify the costs of the
developments exactly, since these are very different
from developer to developer. We present the num-
bers of the lines of code here. We know these repre-
sent only a trend and cannot be seen as an absolute
measure.
Besides the four applications, the overhead of the
development of the core platform is shown in table
1. The columns Stationary, Proxy and Mobile show
the costs of the program parts of the respective com-
puter category. The column reused shows the
amount of code of the proxy application, which was
reused from the stationary application. We see a
very high ratio of at least 90%. In addition, only few

lines of code are needed for mobile applications. The
reason is that essentially the user interface had to be
implemented here and complex functions of the
functional core reside in the proxy. The usage of our
middleware platform NKF leads to a very lean core
platform for mobile devices.

Table 1: Implementation Costs
 Stationary

(lines)
Proxy
(lines)

re-
used

Mobile
(lines)

Core Plat-
form

125000 110000 98 % 9500

Online List 4400 4000 95 % 930
Session
Management

7100 6900 93 % 2100

Diagram 6900 5200 92 % 600
Draw 930 520 90 % 410

4 CONCLUSION AND FUTURE
WORK

Pocket DreamTeam represents a starting point for
further researches in the field of the mobile group-
ware. A developer can create prototypes for mobile
collaborative applications economically and include
the end-user fast in the development process. This is
done by a high amount of reusable source code and a
powerful runtime system, which executes demand-
ing services in the background.

Fig. 7: Pocket DreamTeam Windows (left) and DreamTeam Windows (right)

Further researches go in two directions. On one
hand, the development of a mobile groupware shall
further be simplified by the approaches of User
Interface Plasticity. We expect an enormous poten-
tial here.
We will in addition investigate other aspects of mo-
bility. Problem areas arise from the consideration of
the spatial position or the current usage context. The
complex area of the security in addition plays an
important role for mobile users.

REFERENCES

Bakre, A.; Badrinath, R. R.; 1995. I-TCP: Indirect TCP for
Mobile Hosts, 15th Internat. Conference on Distrib-
uted Computing Systems, 1995

Bey, C.; Freeman, E.; Hillerson, G.; Ostrem, J.;
Rodriguez, R.; Wilson, G.; Dugger, M.; 2001. Palm
OS Programmer's Companion, Volume I, Palm Inc,
July 2001

Calvary, J.; Coutaz, J.; Thevenin, D.; 2001. A Unifying
Reference Framework for the Development of Plastic
User Interfaces, 8th IFIP Working Conference on En-
gineering for Human-Computer Interaction
(EHCI'01), Toronto, May 11-13, 2001, LNCS 2254,
Springer, 173-192

Chabert, A.; Grossman, E.; Jackson, L.; Pietrowizc, S.;
Seguin, C.; 1998. Java Object-Sharing in Habanero,
Communications of the ACM, Vol. 41, No. 6, June
1998, 69-76

Coutaz, J.; 1997. PAC-ing the Architecture of Your User
Interface, In Proceedings of the DSV-IS'97, 4. Euro-
graphics Workshop on Design, Specification and
Verification of Interactive Systems, Springer-Verlag,
1997, 15-32

Dewan, P.; Choudhary, R.; 1992. A High-Level and
Flexible Framework for Implementing Multiuser Inter-
faces, ACM Transactions on Information Systems,
Vol. 10, No. 4, Oct. 1992, 345-380

Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Berners-
Lee, T.; 1997. Hypertext Transfer Protocol -
HTTP/1.1, Request for Comments 2068, January 1997

Graham, N.; 1996. The Clock Language: Preliminary
Reference Manual, York University, Canada, 1996

Hill, R. D.; Brinck, T.; Patterson, J. F.; Rohall, S. L.;
Wilner, W. T.; 1993. Rendezvous Language, Commu-
nications of the ACM, Vol. 36, No. 1, Jan. 1993, 62-67

Joseph, A. D.; Tauber, J. A.; Kaashoek, M. F.; 1997. Mo-
bile Computing with the Rover Toolkit, IEEE Trans-
actions on Computers, Vol. 46, No. 3, March 1997,
337-352

Kistler, J. J.; Satyanarayana, M.; 1992. Disconnected Op-
eration in the Coda File System, ACM Transaction on
Computer Systems, Vol. 10, No. 1, Feb. 1992, 3-25

Kristoffersen, S.; Ljungberg, F.; 1999. Designing Interac-
tion Styles for a Mobile Use Context, First Interna-
tional Symposion on Handheld and Ubiquitous Com-
puting 1999 (HUC'99), Karlsruhe, Sept. 27-29, 1999,
LNCS 1707, Springer, 281-288

Munson, J. P.; Dewan, P.; 1997. Sync: A Java Framework
for Mobile Collaborative Applications, Special issue
on Executable Content in Java, IEEE Computer, 1997,
59-66

Roseman, M.; Greenberg S.; 1996. Building Real-Time
Groupware with GroupKit, a Groupware Toolkit,
ACM Transactions on Computer-Human Interaction,
Vol. 3, No. 1, 1996, 66-106

Roth, J.; 2000. DreamTeam - A Platform for Synchronous
Collaborative Applications, AI & Society (2000), Vol.
14, No. 1, Special Issue on Computer-Supported Co-
operative Work, Springer London, March 2000, 98-
119

Roth, J.; 2002. Mobility Support for Replicated Real-time
Applications (2001), Innovative Internet Computing
Systems (I2CS), Kühlungsborn (Germany), June 20-
22, 2002, LNCS 2346, Springer-Verlag, 181-192

Roth, J.; 2002b. A Communication Middleware for Mo-
bile and Ad-hoc Scenarios, International Conference
on Internet Computing (IC'02), June 24-27 2002, Las
Vegas (USA), Vol. I, CSREA Press, 77-84

Roth, J.; Unger, C.; 2000. Developing synchronous col-
laborative applications with TeamComponents, in
Dieng R. et al. (eds): Fourth International Conference
on the Design of Cooperative Systems, Sophia Anti-
polis (France), May 23-26, 2000, IOS Press, 353-368

Roth, J.; Unger, C.; 2001. Using handheld devices in syn-
chronous collaborative scenarios, Personal and Ubiq-
uitous Computing, Vol. 5, Issue 4, Springer London,
Dec. 2001, 243-252

Schuckmann, C.; Kirchner, L.; Schümmer, J.; Haake, J.
M.; 1996. Designing Object-Oriented Synchronous
Groupware With COAST, In: Proceedings of the ACM
Conference on Computer Supported Cooperative
Work, ACM Press, Nov. 1996, 30-38

Shapriro, M.; 1986. Structure and Encapsulation in Dis-
tributed Systems: the Proxy Principle, Proc. of the 6th
Internal. Conference on Distributed Computing Sys-
tems, May 1986, 198-204

Sun Microsystems; 2000. Jini Technology Core Platform
Specification, Version 1.1, Dec. 2000

Veizades, J.; Guttman, E.; Perkins, C.; Kaplan, S.; 1997.
Service Location Protocol, Request for Comments
2165, June 1997

