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Abstract. Geocast mechanisms allow a sender to transmit network packets to 
receivers residing at a certain geographical region. Geocast forms the basis for a 
number of location-based services, such as announcement services, advertise-
ment services or friend-finders. In this paper, we introduce the notion of 
semantic geocast, where a target area is specified by its meaning. A sender can 
broadcast messages to, e.g., a city centre or a specific building, without pre-
cisely knowing the physical co-ordinates. We implemented semantic geocast on 
top of our self-organizing Location Server Infrastructure (LSI), which reflects a 
location domain model especially designed to cover the needs of mobile users. 
As our infrastructure is self-organizing, it is flexible and easy to extend. We 
consider scalability and stability issues. LSI and its geocast mechanism is fully 
implemented and tested. Evaluations show the effectiveness of our approach. 

1 Introduction 

Location-based services will become increasingly popular in the future. Applications 
that take into account a mobile user's current location play a major role in the area of 
ubiquitous, pervasive and handheld computing. Many people expect a high potential 
of location-based services such as city guides or navigation systems for m-commerce 
scenarios. To support developers of location-based services we created the platform 
LSI (Location Server Infrastructure). LSI hides the specific mechanism to determine 
the mobile user's current location and provides both physical co-ordinates as well as 
semantic information about the current location. With LSI, mobile users can switch 
between satellite navigation systems such as GPS, positioning systems based on cell-
phone infrastructures, or indoor positioning systems without affecting the location 
based-service. A developer can concentrate on the actual service function and has not 
to deal with positioning sensors or capturing protocols.  

One powerful tool to develop location-based services is geocast. Like multicast, 
geocast transmits a network packet to a number of receivers, but in contrast to multi-
cast, the target is a certain geographical region. Geocast is an ideal basic function for 
a number of location-based applications. With geocast, we can send warning an-
nouncements to a region with bad weather conditions, supermarkets can send adver-
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tisement messages to all clients inside a building, and friend-finder applications can 
look for friends in the nearer area of a mobile user. 

In this paper, we introduce the notion of semantic geocast: the target address is not 
defined by a physical area (specified by, e.g., a polygon), but by a semantic location 
such as "University of Hagen". Using semantic geocast, users and applications do not 
have to deal with raw physical co-ordinates, but can use simple location names to 
describe the target. 

2 Related Work 

The notion of geocast was introduced by Imielinski and Navas ([5], [6], and [11]). As 
a basic idea, geocast extends traditional networks by services to use geographical 
target addresses. In [11], Navas and Imielinski suggested a hierarchical network of 
GeoRouters that reflects a structure of a wireless cellular (e.g., cell-phone) network. 
As there is no notion of semantic locations, we can only use physically defined tar-
gets. In [5], semantic locations are partly supported, as some semantic locations (e.g., 
countries and cities) are represented by individual multicast addresses using multicast 
IP group addresses. This approach, however, was not scalable, because the number of 
potential multicast IP groups is far to small to cover a reasonable area such as an 
entire country. In addition, the multicast IP infrastructure is not prepared for a huge 
number of multicast members, moreover not generally available for mobile users. 

Many location-based applications have been developed in the last years, which use 
semantic locations. Cyberguide [1], Guide [2] and the PinPoint Tourist Guide [16] 
offer information to tourists, taking into account their current (semantic) location. 
Context-aware messaging tools trigger actions according to a specific semantic loca-
tion [18]. ComMotion [10] and CybreMinder [3] link locations to events, e.g. give an 
alarm if time is "9:00" and location is "my office". These tourist guides and messag-
ing services use their own, hard-coded mechanisms to express semantic locations. 
They would heavily benefit from a general infrastructure to use semantic geocast. 

Several research platforms provide a basis to develop location-based services. 
Cooltown [8] is a collection of location-aware applications, tools and development 
environments. Nexus [4] introduces so-called augmented areas to formalize location 
information. Augmented areas represent spatially limited areas, which may contain 
real as well as virtual objects. OpenLS [12] is an upcoming project and provides a 
high-level framework to build location-based services. All these systems could heav-
ily benefit from a framework supporting semantic locations as well as semantic 
geocast services. 

3 Semantic Locations and the Location Server Infrastructure 

The notion of semantic locations is not new (e.g., [9], [18]), but descriptions often 
tend to be very abstract. Pradhan distinguishes three types of locations [14]: physical 
locations such as GPS coordinates, geographical locations such as "City of Hagen" 
and semantic locations such as "Jörg's office at the university". In this paper, we do 
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not distinguish geographical and semantic locations, but view any location other than 
physical as a semantic location. In the following, we first introduce a formal model 
for semantic locations. We then present our infrastructure LSI, which reflects this 
formal model. 

3.1 Semantic Locations 

Semantic locations are appropriate for a number of applications, sometimes in combi-
nation with physical locations. Semantic locations have some important advantages: 
• Semantic locations have a meaning to the user; in contrast, physical locations 

usually have no meaning at all to most peoples. 
• Semantic locations can easily be used as a search key for traditional databases, 

tables or lists. Looking up physical presentations, we need spatial databases with 
the ability to deal with geometric objects such as polygons. 

 
In this section, we want to describe the concept of semantic locations more precisely. 
We especially want to relate semantic locations to physical locations. Let P denote the 
set of all physical locations. We call each coherent area S ⊆ P a semantic location of 
P. We further call each set C ⊆ 2P of semantic locations, a semantic coordinate system 
of P. (2P denotes the power set of P.) Note that we do not assume two semantic 
locations to be generally disjoint. A reasonable semantic coordinate system C con-
tains semantic locations S with certain meanings, e.g., 
• locations with a political meaning: countries, states, districts, cities; 
• geographical locations: continents, mountains, rivers, lakes, forests; 
• mobile locations: trains, planes, cars; 
• temporary locations: construction zones, fairs; 
• other locations: campus, malls, city centres. 
 
We further introduce a name for a semantic location. Let N be the set of all possible 
names. We define a function NAME: C → N, which maps a semantic location to a 
string. We require names to be unique, i.e. NAME(c1) ≠ NAME(c2) for c1 ≠ c2. We call 
a semantic location with its corresponding name a domain. For a domain d, d.name 
denotes the domain name, d.c the semantic location. 

In principle, a semantic coordinate system C could be an arbitrary subset of 2P that 
contains coherent areas. Looking at real-world scenarios, however, we usually find 
hierarchical structures (fig. 1), e.g., a room is inside a building, a building is in a city, 
a city is in a country etc. 

We divide C into so-called hierarchies. A hierarchy contains domains with a simi-
lar meaning, e.g., domains of german cities or domains of geographical items. Each 
hierarchy has a root domain and a number of subdomains; each of it can in turn be 
divided into subdomains. We call a top node of a subhierarchy a master of the corre-
sponding subdomains. We denote m> s for master m of subdomain s. Further f  
denotes the reflexive and transitive closure of > , i.e. d1f d2 if either d1= d2 or d1 is a 
top node of a subtree which contains d2.  

 



4      Jörg Roth 

 
Fig. 1. A sample semantic coordination system 

Fig. 1 shows two hierarchies, a de hierarchy (the area of Germany, white boxes) and a 
geo hierarchy (geographical entities such as rivers and mountains, grey boxes). 

We call a link between a subdomain and its master relation. Relations carry infor-
mation about containment of one domain according to another. Hierarchies are built 
according to three rules: 
• The area of a subdomain has to be completely inside the area of its master, i.e. if 

d1> d2 then d2.c ⊂ d1.c. 
• The name of a subdomain d2 extends the name of its master d1 according to the rule 

d2.name=<extension> + '.' + d1.name, where <extension> can be an arbitrary string 
containing only letters and digits. With the help of this rule, we can effectively 
check if d1 f d2 or d1> d2 with the help of the domain names. 

• Root domain names of two hierarchies must be different. 
 
In addition to relations, a domain can be associated to other domains. Two domains 
d1, d2 are associated, if they share a physical area (i.e. d1.c ∩  d2.c ≠ {}) and neither 
d1f d2 nor d2f d1. Associated domains can be in different hierarchies or in the same 
hierarchy. The domain downtown.hagen.de is associated to volme.river.geo, 
because Volme is a river which flows through the downtown of Hagen. Associations 
carry important information for location-based services. E.g. with the help of associa-
tions, we can discover all semantic locations of a specific physical location. 

The number of associations can be very high for high-level domains. We reduce 
the amount of associations with a compression mechanism [17], which deletes asso-
ciations without loosing the corresponding information. In fig. 1, e.g. de is not associ-
ated to geo, since lower-level associations carry all necessary information. 

3.2 The Technical Infrastructure 

Our technical infrastructure LSI reflects the domain model described above. A dis-
tributed system of so-called location servers (LS) stores location information and 
provides services for mobile clients and the corresponding location based services (fig 
2). The infrastructure consists of three segments:  
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Fig. 2. The system architecture 

The positioning segment contains the positioning systems, e.g., indoor positioning 
systems, satellite navigation systems or systems based on cell phone infrastructures. 
The user segment contains the mobile node with the LSI runtime system and the 
mobile part of the location based service. Note that our infrastructure does not cover 
the network part of a location-based service. It depends on the mobile part to establish 
a connection to a specific server and to use the service. The runtime system accesses 
the positioning systems through position drivers. With the help of drivers, we can 
change the positioning systems, even at runtime, without affecting the rest of the 
system. The client runtime system also contains the following components: 
• Basic services provide a homogenous view on locations for location-based services. 

These services map raw location information from the positing drivers to both 
physical as well as global unique semantic locations. These services are described 
in [17]. 

• Semantic geocast: With this component, a location-based service can send and 
receive geocast messages. 

 
The server segment contains the location servers that store the domain data. In princi-
ple, we could use one huge database and store hierarchies with the corresponding 
domains on a single server. One database for a huge number of potential clients, 
however, would be a bottleneck. In addition, information about local domains is usu-
ally available only locally and difficult to administrate in a central database. As a 
solution, we use a distributed system of location server each storing a number of 
domains. Each location server is responsible for a specific domain and all subdo-
mains, for which no other location server exists. In our example, the location server 
for hagen.de covers fley.hagen.de and downtown.hagen.de, but not univer-
sity.hagen.de, as this domain has its own location server.  
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The entire system is self-organizing. The location servers establish the relation and 
association links among each other automatically. Building these links is done by a 
set of lookup and discovery protocols not described in this paper (see [17] for details). 
In order to decouple the infrastructure from communication aspects, we use a commu-
nication middleware, especially designed for mobile scenarios [15]. When a mobile 
node moves to another location, it automatically looks up an appropriate location 
server (called the local location server, LLS). The LLS is the representative of the 
entire infrastructure for a mobile node. Any service usage is directed to the LLS. As 
mobile users are distributed among different location servers, this infrastructure is 
highly scalable. Especially, our system does not overload top-level servers. 

4 Semantic Geocast using LSI 

The logical structure of relations and associations forms an ideal platform for a geo-
cast mechanism as domain information can be distributed among this logical network. 
A geocast request r from a mobile node contains a target domain r.domain and a mes-
sage r.message. The goal is to transfer r.message to all mobile nodes residing at posi-
tions p∈r.domain.c. 

In the following, we make a simplification: we represent every domain by its own 
location server. We assume that a communication between two domains always needs 
a network transaction. In reality, the performance of our system is far better, as 
communication often can be done inside a location server. Thus, our performance 
evaluations in a later section describe a worst-case scenario. 

4.1 The Semantic Geocast Mechanism 

The basic idea of our semantic geocast mechanism is as follows: 
• Registration: Each mobile node registers itself at all location servers, which cover 

the occupied semantic locations. The location servers accept geocast requests and in 
turn deliver other geocast messages to the mobile nodes. 

• Address Propagation: Each location server builds a list of network addresses of 
other location servers. The lists are periodically updated, thus, they notice, when 
servers start up or are shut down. 

• Message Passing: When a location server receives a geocast request, it looks up an 
appropriate location server in its address list for delivery and redirects the request. 
Often, this server is not the final destination, thus additional transfers may be 
required. 

• Delivery: Finally, a target location server receives the message and distributes it to 
the registered mobile nodes. As more than one location server may cover the target 
domain, additional transfers to other servers may be required. 

 
Fig. 3 illustrates the basic mechanism. Note that in this figure, we equate domains to 
their location servers. 
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Fig. 3. The geocast mechanism 

In this scenario, a mobile node residing at waterfall.volme.river.geo sends a 
geocast message to all mobile nodes at university.hagen.de. We distinguish the 
following servers, which process a geocast request: 
• The source LS accepts the geocast request from a mobile node (waterfall. 
volme.river.geo in fig. 3). 

• Intermediate LSs relay geocast requests to the target domains (hagen.de in fig. 3). 
• Target LSs are responsible for the target domain and send geocast messages to the 

mobile nodes (university.hagen.de, 3.f07.university.hagen.de and 
3f08.university.hagen.de in fig. 3). 

 
Note that the communication between LSs can use “short cuts” and are not restricted 
to associations and relations. We assume that all servers are connected via a global 
network (usually the worldwide Internet). Once a server has another server in its 
address list, they can communicate directly. 

The geocast mechanism mainly contains two parts: a proactive part to collect 
addresses and a reactive part to route geocast requests. 

4.2 Address Propagation 

Each server proactively collects addresses of other locations servers. This is perma-
nently done in the background, thus new servers are registered after a delay. As the 
list of all location servers in the system can be very large (e.g., many thousands 
entries), we allow each server to build a list with a specific length limitation. This 
reduces the amount of memory required by an LS, but also reduces the traffic to 
maintain the address lists. Our mechanism ensures stability, even if a target LS is not 
listed by the source LS. Locations servers collect addresses according to two mecha-
nisms: slow propagation and fast propagation. 

The slow propagation is built according to the propagation mechanism integrated 
in the DSDV ad-hoc routing algorithm [13]. When a server starts up, it sends an 
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update message with its own address to its “neighbours”, i.e. its master, all subdo-
mains and all associated servers. The message contains a sequence number, which a 
server has to increase at every new start-up. 

Whenever a server receives an address update, it first looks in its own table 
whether it already has received an update with this sequence number. If yes, the 
message is simply ignored; if not, it stores this new information and forwards the 
update to all neighbours apart from the originator. The sequence number avoids 
eternally circulating updates. Each server periodically (e.g. every day) increases its 
own address sequence number and distributes the address. Each address entry has a 
certain lifetime, specified by the originating server. Thus, disconnected servers are 
removed from the lists after the lifetime expired. 

To reduce the overall traffic, each server collects update messages for a specific 
time (e.g. 10 minutes) and then exchanges them in a bundle. As a starting server does 
immediately flood updates through the network, denial of service attacks are more 
difficult. We call this mechanism the slow propagation, since it takes a considerable 
long time (e.g., some hours) for every location server to list an address of a new 
server. 

To propagate new addresses much faster, we use an additional mechanism, the fast 
propagation. A new server first starts with the slow propagation. Its own address list 
initially is empty and thus it receives new addresses from its neighbours. Whenever it 
receives a root domain server, it uses the fast propagation mechanism: it once sends 
an address update to this root server. As a result, this root server distributes the new 
address in its own hierarchy, passing this information down the hierarchy tree. If 
neighbours of a new server already know the root domains of all hierarchies, 
addresses are distributed very fast among the entire infrastructure.  

To investigate the effectiveness of our mechanisms, we ran a number of simula-
tions. Since LSI is fully implemented and operable, we can use the real infrastructure 
for evaluation purposes. We developed an additional simulation tool to randomly 
generate a huge number of domains. The tool first creates a root domain for every 
hierarchy and then additional levels of domains by adding up to 10 subdomains for 
each domain. The process runs until we reach the required number of domains. 
Finally, the tool randomly adds associations between the hierarchies. We run a num-
ber of simulations with the same parameters to compensate outliers. We first use the 
random hierarchies to compare the slow and fast propagation (fig. 4). In the follow-
ing, h denotes the number of hierarchies and n the total number of domains in all 
hierarchies. 

As real network delays heavily depend on the actual network structure and load, 
we only measure the hops in our simulations. Fig. 4 shows the maximum number of 
hops to inform a server about a newly started server. We simulate scenarios with 2 
and 16 hierarchies. If all nodes are distributed among a higher number of hierarchies, 
the propagation works more effectively, because associations connect domains more 
tightly. For any number of hierarchies, the fast propagation needs a significant lower 
number of hops to inform all domains, thus we always use fast propagation, whenever 
a new node collects a root server address. 
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Fig. 4. Comparison of Slow and Fast Propagation 

4.3 Message Passing 

Once a source LS receives a geocast request from a mobile node, it looks up an 
appropriate location server. This location server can either be a target LS or an inter-
mediate LS. The latter case occurs, if a target LS is not listed, either because of a 
limited list space or the propagation has not yet completed. 

The following pseudo code outlines the thread integrated in every LS to handle 
geocast requests. Here, x denotes the local LS. 

 
while (true) // The handle thread loops endlessly { 
  wait for geocast request r; 
  if r.domainf x.domain { // I'm a target LLS  
    send r.message to all registered mobile nodes;  
    send r to all subdomains; 
  } 
  else { // I'm an intermediate or a source LS  
    look up servers s in the local address list where 
       s.domainf r.domain – if more than one server is found, 
       choose the lowest in the hierarchy; 
    if such a server s is found 
      send r to s; 
    else { // Try routing via relations and associations  
      look up subdomain server y of x with y.domainf r.domain; 
      if such a server y is found  // there can only be one 
        send r to y; 
      else if x has associations into the target hierarchy { 
        choose an appropriate associated server z 
            (see selection above); 
        send r to z; 
      } 
      else if x has a master m  // Try the master 
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        send r to m; 
      else 
        return an error to the originating node;  
    } 
} 

 
Usually a source LS handles a request (at ), which is directly passed to a target LS 
(at ). If a target is not listed, a request is send to an intermediate LS (at ), which 
may relay it in turn to another intermediate LS. The message passing mechanisms 
ensures that requests finally arrive at a target LS. A target LS delivers the messages to 
mobile nodes. In addition, it relays the request to all subdomains. Note that as subdo-
mains are completely inside a master domain, every subdomain has to process the 
geocast request as well. Section  contains a backup strategy, if address lists do not 
contain the required entries. In this case, a server asks its subdomains, its associated 
domains and its master to pass a request nearer to a target. If address lists contain a 
minimum of entries (see below), this block usually is not processed. 

4.4 Dealing with Restrictions, Scalability 

On one hand, our infrastructure should be scalable for a higher number (e.g., many 
thousands) of domains. On the other hand, each location server should be very light-
weight, i.e. should not make high hardware demands. As a result, a location server 
could have a limited memory space for storing addresses in its list. Let l denote the 
maximum number of entries in the address list. To simplify the evaluation, we assume 
that each location server has the same space limitation. In reality, however, top-level 
servers may be prepared for larger lists. Our mechanism collects addresses using pri-
orities: 1 (highest): root domains; 2: all domains of the own hierarchy; 3: all domains 
of other hierarchies. Domains with priorities 2 and 3 are further ordered by the 
domain level (higher levels first). The address list is filled according to these priori-
ties: if the list is full and a new address is added, the entry with the lowest priority is 
dropped. For successfully passing geocast messages, at least a list of all root domains 
(except for the own) is necessary, thus l ≥ h-1. Note that we do not store related or 
associated servers in the address list, as these links use a separate storage. 

The second step ensures that in case of sufficient address space, at least all servers 
of a hierarchy know all servers of their own hierarchy. Thus, whenever a geocast 
request was directed to the target hierarchy, only one more hop is required to reach a 
target LS. The third step finally fills the list with domains of other hierarchies. 

Fig. 5 shows the result of evaluating the message passing algorithm. Here, we 
count the maximum and average hops to reach the first target LS. The x-axis shows 
the limited list space in relation to the total number of domains. Not surprisingly, the 
average number of hops converges to 1 for higher l. Each curve has a certain break 
point (e.g. at 50% for h=2). At this point, address lists are capable to store all domains 
of the own hierarchy.  
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Fig. 5. Message passing with reduced address tables (n=1000) 

As a result, the maximum hop count to reach a target is 2: one to reach the root server 
of the target hierarchy and one more to reach the target LS inside the hierarchy. 
Assuming nh domains for each hierarchy, where nh ≈ n/h, we get a maximum of two 
hops for l ≥ h-1+n/h. Having less entries in the address list, but not less than h-1, 
message passing still is successful, but the number of hops is considerable high. 

4.5  Security Issues 

Distributed systems, especially in mobile computing environments, are subject to 
security issues. Our security solutions are very complex, thus we can only present the 
ideas at this place. To protect a server or mobile node against malicious servers, a 
node can request an authentication certificate of the correspondence node. Authenti-
cation is proofed according to the challenge-response mechanism. A server can reject 
any request, if the authentication fails. This includes geocast requests as well as 
requests to register as a master, subdomain or associated server. 

If mobile users do not want to receive any geocast message, they can register 
themselves in stealth mode. In this case, LSI only provides basic services. As the 
mobile user is not listed by an LLS, the system does not collect any position data. 
Note that protecting mobile users against malicious location servers that collect 
motion profiles generally is very difficult. The same unsolved problem occurs in cell-
phone networks. As our system is decentralized, such servers would have to cover a 
large area to capture motion profiles of mobile users. 

A mobile user, who wants to receive geocast messages, is not willing to receive 
unwanted (i.e. spam) messages. As in traditional networks, an application listens for a 
set of pre-defined ports and ignores all messages arriving at other ports. In addition, 
our system offers mechanisms to discover the identity of a mobile user. As the mobile 
user cannot send geocast messages directly, but has to use an LLS, LSI can request a 
certificate of the sender for each geocast message. This information can be passed 
through to all receivers. We are aware that this mechanism cannot avoid spam com-
pletely, but even in traditional networks this problems is not solved. 
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4.6 Further Details 

As mentioned above, LSI and its semantic geocast mechanism is fully implemented 
and tested. The following code shows how to send a geocast message with only a few 
lines of code: 

 
LSI.startService();             // Start the runtime system 
LSI.setStealthMode(false);      // I want to receive messages 
byte[] msg="hello".getBytes();  // Create a message 
LSI.sendGeocast(NATIVEGEOCAST,  // And send it to  
     MSG_PORT,"hagen.de",msg);  // all nodes in Hagen 
 

We distinguish two kinds of geocast requests: native requests use UDP for the last 
hop, i.e. from a target LS to mobile nodes. Using native requests, a receiver has to 
listen to a traditional UDP port to receive geocast messages. In contrast, event-based 
requests use internal protocols between the client and the LLS. Using the event-based 
mechanism, an application can either call a receiveGeocast method to wait for 
geocast messages or register a listener object that is called when a message arrived.  

5 Conclusion and Future Work 

In this paper we presented a decentralized, self-organizing approach to provide geo-
cast services. We especially introduced the notion of semantic geocast, where target 
regions are defined by their meaning rather than by their physical area. We presented 
mechanisms that ensure scalability and stability, even if the servers have certain 
limitations concerning memory space. 

LSI mainly addresses technical issues and provides a basic communication plat-
form for location-based services. To use it in real environments, we additionally have 
to address organisational issues, e.g., we have to define useful hierarchies with 
meaningful domains. If LSI is a service inside a commercial infrastructure, e.g. a cell-
phone network, we need a system to charge users. Such organisational issues will be 
addressed in the future. 
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