
Information sharing with
handheld appliances

Jörg Roth

University of Hagen, Department for Computer Science
58084 Hagen, Germany

Joerg.Roth@Fernuni-hagen.de

Abstract. Handheld appliances such as PDAs, organisers or electronic pens are
currently very popular. Handhelds are used to enter and retrieve useful infor-
mation, e.g., dates, to do lists, memos and addresses. They are viewed as stand-
alone devices and are usually not connected to other handhelds, thus sharing
data between two handhelds is very difficult. Rudimentary infrastructures to
exchange data between handhelds exist, but they are not designed for a seam-
less integration into handheld applications. The fundamental different nature of
handheld devices to desktop computers leads to a number of issues. In this
paper, we first analyse the specific characteristics of handheld devices, the cor-
responding applications and how users interact with handhelds. We identify
three basic requirements for a successful realisation: privacy, awareness and
usability. Based on these considerations, we present our own approach.

1 Introduction

Currently, there is a growing market for handheld devices such as PDAs, mobile
phones, electronic pens etc. Upcoming communication technologies like UMTS and
Bluetooth promise new functionality to support people to communicate which each
other. Currently, the most accepted way for communication is still verbal communi-
cation. Symbolic or textual media such as SMS or Email are inconveniently to use in
connection with handheld devices.

Handheld devices already contain a huge amount of data, e.g., appointments, holi-
days, addresses and agendas. It should be possible to exchange these data between
users without a considerable effort. On the other hand, handheld devices basically
have a private nature. Personal data are stored on such devices, which usually should
not be shared with other people. This contradictory characteristics may be one reason,
why handhelds are currently viewed as autonomous systems without any communi-
cation abilities to other handhelds.

In this paper we present the requirements, issues and problems of communication-
oriented, distributed applications for handheld appliances. A lot of research was done
about the design of distributed applications in desktop environments. However, due to
the fundamental different nature of handheld devices, this knowledge can hardly be
adapted to handheld scenarios.

This paper is structured as follows: first we present the fundamental differences of
handheld devices to traditional desktop computers. Based on these considerations we

identify three key requirements, a communication-oriented distributed handheld
application has to meet: privacy, awareness and usability. We then present a frame-
work which allows to create successful information sharing handheld applications.

2 Handheld computing characteristics

The notion of handheld device, palmtop, PDA and organiser is often interpreted in
different ways. One older interpretation distinguishes between pen-based devices and
palmtops, where the latter have keyboards. In contrast, Microsoft divides Windows
CE devices into handheld PCs (H/PC) with a keyboard, palmsize PCs (P/PC) which
are controlled by pen and handheld PC Pro devices, which are subnotebooks [3]. To
get completely confused, Microsoft calls the new pen-based devices based on
Windows CE 3.0 Pocket PC.

In the following, we understand by handheld devices mobile devices with small
displays, without or only with rudimentary keyboards and an autonomous power
supply. Examples are:
x 3Com's Palm devices (e.g. Palm III or Palm V),
x Casio's Cassiopeia or
x Electronic pens such as the C-Pen.

In particular, we do not summarise notebooks or laptops under the notion of hand-
helds.

Handheld computing is closely related to so-called ubiquitous computing. Mark
Weiser introduced the concept of ubiquitous computing often called "ubicomp" [19].
Weiser's vision was a huge number of invisible and "calm" computers surrounding
people in their everyday life. In contrast, handheld computing keeps the device in the
foreground, where ubicomp devices should work in the background [6]. People using
handhelds are aware of using computers and adapt their activities to the device, e.g.
learn a specific kind of handwriting. However, studying handheld computing may be
the right step towards ubicomp, since a number of problems are identical. E.g., hand-
helds should be suitable for everyday tasks, easy to handle and failproof.

+DUGZDUH�DQG�VRIWZDUH�FKDUDFWHULVWLFV

Table 1 shows some hardware characteristics of popular handheld devices.

Table 1. Some hardware characteristics of handheld devices

Device Processor RAM Screen Battery life
Palm IIIxe
(3Com)

16Mhz
MC68EZ328

8MB 160x160
(16 grey)

1.5-2 months
(normal use)

Cassiopeia E-15
(Casio)

69MHz
NEC VR4111

16MB 240x320
(16 grey)

25 hours
(continuously)

C-Pen 800
(C-Technologies)

100Mhz
Intel StrongARM

8MB 200x56
(b/w)

2-3 weeks
(normal use)

Compared to desktop computers, handheld devices have small memory, low computa-
tional power, limited input and output facilities and usually no mass storage. Having
no mass storage, persistence data have to be stored in the battery-buffered RAM, what
decreases the available RAM during runtime for dynamic data and runtime stack.
Even worse: some CPUs (e.g. Palms CPU) allow only to address small pieces of
memory (64k) as a whole. The reduced capabilities have two major reasons:

1. Size: The display is limited to the area which conveniently can be hold in one
hand (approx. 10cm x 8cm). Chips (e.g. memory and CPU), even when highly inte-
grated, need space for connectors and circuit boards. Due to these limitations, it is
impossible or at least cost intensive to integrate high resolution displays or a big
number of electronic parts inside a device.

2. Battery life: Fast CPUs, big memories and high resolution displays (particularly
coloured) cost a big amount of valuable battery power. If battery technology will not
be significantly improved in the future, handheld computers will always be far behind
the capabilities of desktop computers.

The reduced equipment of handheld devices has big influence on software devel-
opment. Handheld applications are usually not developed 'from scratch'. Handhelds
come along with their own operating system, e.g. PalmOS [2], Windows CE [3],
EPOC [17] or ARIPOS [5]. These handheld operating systems cover the following
area of services:
x starting, stopping and switching applications, memory management and managing

the user interface;
x special device-dependent services like handwriting recognition, OCR, performing

time-dependent alarms;
x supervising the battery power, performing auto-power-off;
x managing persistent data in the battery-buffered memory;
x managing communication to other devices (usually to the host PC).

Software development kits allow to code and compile handheld applications on
desktop computers, usually in C. Some kits allow to test applications on emulators
before they are downloaded on the specific device.

Compared to desktop operating systems, handheld operating systems do not offer
the same variety of services. The major shortcomings are:

Limited user interface capabilities: Usually the so-called WIMP paradigm (Win-
dows, Icons, Menus, Pointers) which is very common on desktop computers, is not
supported on handhelds or in a very reduced manner. This is because of the limited
display and input capabilities.

Limited support for persistent data: Since handhelds have no mass storage system,
all persistent data have to be kept in the battery-buffer RAM. Windows CE emulates a
hierarchical file system inside the RAM area. Other systems like ARIPOS and
PalmOS store persistent data in so-called databases [2] (not to be confused with tra-
ditional databases). A database is a persistent collection of records. Each record has a
unique identifier; its content is opaque to the operating system. Constructing and
interpreting records solely depends on the corresponding application. Databases can
be viewed as flat file system with record-oriented structure.

Limited or no parallel execution capabilities: Most handheld operating systems do
not support threads or processes for background tasks, which is a common technique

for desktop computer applications. As a work-around, some systems offer so-called
timers which can periodically call a predefined procedure. Unfortunately a call is only
performed, when no other instruction is being executed, thus a timer does not provide
real background operations.

Limited support for communication: Handhelds only support a small set of com-
munication capabilities compared to desktop computers. Handheld operating systems
usually support one specific way of communication determined by the peripheral
equipment. E.g., ARIPOS only supports IrDA communication, since the C-Pen only
has an infrared transceiver to communicate. PalmOS supports serial communication
and TCP/IP, but does not allow to install a TCP server socket. Server sockets are
essential to react on incoming communication requests.

Networking
In addition to the limited communication support, the underlying network itself has
some drawbacks:
x Wireless communication infrastructures currently have low bandwidth (GMS, e.g.,

only provides 9600 Baud) and tend to have high error rates and abnormal termina-
tions.

x Handhelds as communication end points are mobile in the network, i.e. often
change their network addresses.

x Mobile devices are rarely connected, i.e. are most of the time not available in the
network because of network failures or just because the device is turned off.

Emerging technologies like UMTS, IPv6 and Bluetooth will change the way hand-
helds are used inside a network. E.g., UMTS allows a device to be permanently con-
nected to the network with high bandwidth. IPv6 offers with MobileIP the possibility
to have always the same IP address, even when a device moves inside the network.
However, such technologies are not yet widely available and cannot be used inside
current concepts.

All topics mentioned above have big influence on the entire application development
process. Usually, developing handheld applications is very cost intensive as a result of
the limited handheld capabilities. This includes testing and debugging, since hand-
helds offer not the same debugging facilities than desktop computers.

3 Handheld applications

Interaction with handheld applications follows a different usage paradigm as interac-
tion with desktop applications. First, handheld applications have to respect the limita-
tions mentioned above. Much more important: users require another availability of
such applications: handhelds do not 'boot up'. Applications have to immediately
appear on screen. In turn, when the handheld device is deactivated, an application has
to immediately save its state. In general, handheld applications are developed to enter
and retrieve small pieces of information rather than processing data.

Application types
On handhelds, only a small set of application types is reasonable. To get a deeper
insight into this topic we analysed a set of 32 Palm applications currently available as
shareware. In order to get a representative set of applications, we took a shareware
collection of a popular german journal [4]. Table 2 shows the results.

Table 2. A selection of Palm applications

Applications Application type Data type Count
Launcher III, SwitchHack,
German Chars, Hackmaster,
Eco Hack

Utilities mixed 5

Brainforest, dNote,
HandyShopper,
PocketMoney, HanDBase

Textual notes, ideas,
shopping lists, bank
accounts

textual
documents,
tables

5

Feiertage, Yearly, DateBk3,
Palm Planner

Dates, appointments,
holidays

dates 4

Abacus, TinySheet, MiniCalc Spreadsheet tools spreadsheets 3
Desktop to Go, Documents to
Go, TealDoc

Documents textual
documents

3

ptelnet, MultiMail, HandWeb Internet tools mails, web pages 3
DiddleBug, TealPaint Graphical notes,

freehand
graphical data 2

Parens, Currency Calculator Calculators numbers 2
PocketChess, TetrisV Games game states 2
Secret! Security texts 1
Route Europe Route planner geographic data 1
Timer Clock time 1

Five applications are utilities and so-called hacks which extend the operating system.
This kind of application is not used to store information, thus not taken into further
considerations.

Except for two programs which allow graphical input, all applications store well
structured and record oriented data, often text based. Typical data of handheld appli-
cations are
x texts and lists of texts,
x date entries,
x numbers and
x tables or spreadsheets.

None of the applications above deal with multimedia data such as audio or video.
Audio and video require a considerable network bandwidth, sufficient output devices
and a huge amount of battery charge. Currently multimedia data is not suitable for
handheld devices.

To summarise, most of the application deal with simple data types such as strings or
numbers, joined together as lists or tables. Only few applications have a graphical
nature.

Privacy
Data stored inside a handheld device are usually viewed as private. Even more than
desktop computers, such devices are viewed as personal ones [16]. Personal data, e.g.
telephone numbers, birthdays and leisure-time activities are stored inside such a
device. Some handheld operating systems protect private data. E.g., PalmOS allows to
mark some entries as private. Such entries are only visible after a password is entered.
In addition, the handheld device as a whole can be locked. After turning the device
on, a password has to be entered.

Connecting handheld devices in order to exchange data increases the problem of
private data. If a handheld device is connected to an untrusted network, applications
have to offer mechanisms to guarantee privacy of individual data. No private data
should be transferred across a network, other people should not have the possibility to
break into a handheld in order to spy out data.

To gain acceptance by end-users, an infrastructure has not only to ensure privacy;
an end-user has to be convinced that her or his private data is kept private. This is
perhaps the most crucial issue related to privacy.

Awareness
Mobile devices can be connected to the network at different places. Depending on the
location, different information is available. Users should be aware of their current
location, including the geographic location as well as the location in the network.
These information are part of the so-called context awareness. Abowd and Mynatt list
different kinds of context awareness, defined by the "five W's": Who, What, Where,
When and Why [1]. E.g., the Who context is based on information about other people
in the environment, especially when looking at activities.

Sharing information between people leads to the area of groupware and CSCW
(computer supported collaborative work). Collaborative applications significantly
differ from single-user applications. Many users provide input (often simultaneously),
output has to be processed for many users and shared data have to be kept consistent.
Groupware applications have to provide a 'feeling' of working together in a group,
called collaboration awareness: users have to be aware of other users involved in the
collaborative task.

Context awareness as well as collaboration awareness require elements inside the
applications' user interfaces called awareness widgets. Similar to users, we call an
application aware of something, if it explicitly takes care for a special situation,
otherwise we call it transparent. E.g., collaboration aware applications are especially
designed to support a group, i.e. they contain special code for group functions. Col-
laboration transparent applications are original single-user applications, which, with
help of a groupware toolkit, can be used by many users simultaneously. Collaboration
transparent applications do not offer awareness widgets. A similar notion can be
applied to the mobility aspect: mobility aware applications contain code to handle
mobility, e.g. react on unstable network connections and changing network locations.
Mobility transparent applications cannot handle such problems explicitly, but rely on
an underlying platform.

Usability
Usable applications support users in carrying out their tasks efficiently and effec-
tively. More than desktop applications handheld applications should have a high
degree of usability. When an application is designed in isolation from the intended
users, the result is all too often an application which does not meet their needs and
which is rejected by end-users. An application should meet the following require-
ments:

Respect hardware and software limitations: Usable applications consider the
hardware and software of the hosting handheld device. This means, not to run heavy
computation tasks on handhelds. User interfaces should be designed for small dis-
plays with minimal text input. Communicating across the network should consider the
small bandwidth and high error rate.

Software quality: Handheld applications should be more failproof than desktop
applications. A locked or crashed application blocks the entire device. An application
hanging in an infinite loops prevents some devices from being switched off. Cold
starting a handheld often results in loosing all stored data. The problem becomes even
worse, if the applications communicates with other devices. One device being blocked
may interrupt communication in the entire group. To improve software quality, design
guidelines may help a developer to build well-formed applications. Such a guideline
can, e.g., be found in [2]. A platform or application framework helps to fulfil these
guidelines as it encapsulates standard solutions for a specific application domain. An
application developer can rely on a set of services and only has to code application-
specific functions.

Respect everyday requirements: Handheld applications are used every day. Abowd
and Mynatt introduced the term called everyday computing [1]. They state that daily
activities rarely have a clear beginning or end and often are being interrupted. This
issue is especially important when considering communication-oriented applications.
The strict classification between asynchronous and synchronous groupware [7],
hardly applies to everyday tasks. This leads to the notion of relaxed synchronous
collaboration when group members collaborate synchronously, but may infrequently
disconnected from the network for short periods of time [15]. In addition, everyday
tasks require spontaneous, unplanned communication. Exchanging data between
handhelds should be as easy as a phone call. Especially, user-driven central co-ordi-
nation or administration should be avoided.

4 Related work

Mobile phones
Mobile phones offer simple mechanisms to transfer textual data. SMS (short message
service) [13] is a protocol which allows to send up to 160 characters to another mobile
phone. It can be slightly compared to the email service on the Internet, but is based on
the mobile phone infrastructure GSM (global system for mobile communication).
WAP (wireless application protocol) [20] allows to browse special Internet pages on
small displays. WAP only provides a one-way information channel, i.e. it is not
possible to send page contents from one device to another.

Beaming
A simple technique to exchange data between handhelds, so-called "beaming", comes
along with the Palm device [2]. Manufacturer of other devices, e.g., of C-Pens or
Windows CE devices adapted the technology. Beaming can be viewed as de-facto
standard for short range data exchange between handheld devices. Beaming is based
on Infrared and allows to exchange a single record of data, e.g. one address or one
memo. Involved devices should be inside a range of approx. one meter. The action of
beaming is done manually, i.e. the sender as well as the receiver have to interact with
their device, every time an entry is transferred. Beaming is only suitable for a small
amount of data.

PIMs
Personal Information Managers (PIMs) are important tools when using handhelds.
PIMs conveniently allow to enter a data by keyboard and then download it to the
handheld device. A popular PIM is Microsoft's Outlook [11]. In addition to synchro-
nising data with a handheld, Outlook allows to schedule appointments in a team, thus
it is possible to exchange limited data between handhelds among a group of people.

Coda
Several research platform have been developed to address the problem of data dis-
tribution and consistency in mobile environments. Coda [9] provides a distributed file
system similar to NFS, but allows disconnected operations. Applications based on
Coda are fully mobility transparent, i.e. run inside a mobile environment without any
modification. Disconnected mobile nodes have access to remote files via a cache.
Operations on files are logged and automatically applied to the server when the client
reconnects. Coda applications can either define themselves mechanisms for detecting
and resolving conflicts or ask the user in case of conflicts.

Rover
The Rover platform [8] supports mobility transparent as well as mobility aware appli-
cations. To run without modification, network-based applications such as Web
browsers and news readers can use network proxies. The development of mobility
aware applications is supported by two mechanisms: relocated dynamic objects
(RDOs) and queued remote procedure calls (QRPC). RDOs contain mobile code and
data and can reside on a server as well as on a mobile node. During disconnection,
QRPCs are applied to cached RDOs. As in Coda, operations are logged and applied to
server data after reconnecting.

Bayou
Bayou [18] provides data distribution with the help of a number of servers, thus seg-
mented networks can be handled. In contrast to Coda, replicated records are still
accessible, even when conflicts have been detected but not resolved. Bayou applica-
tions have to provide a conflict detection and resolution mechanism. Ideally, no user
intervention is necessary. Bayou is not designed to support real-time applications.

Sync
Sync [12] allows asynchronous collaboration between mobile users. Sync provides a
collaboration based on shared objects which can be derived from a Java library. As in
Bayou, data conflicts are handled by the application. Sync applications have to pro-
vide a merge matrix, which contains a resulting operation for each pair of possible
conflicting operations. With the help of the merge matrix, conflicts can be resolved
automatically.

Lotus Notes
Lotus Notes [10] has not primarily been designed for mobile computers, but allows
replicated data management in heterogeneous networks. Nodes can be disconnected
and merge their data after reconnection. Data in Lotus Notes have a record structure.
Fields may contain arbitrary data which are transparent to Notes. Records can be read
or changed on different nodes simultaneously. When reconnecting, conflicting
updates are resolved by users. With help of the Notes extension Mobile Notes, it is
possible to access databases via Palm devices and mobile phones.

Discussion
Mobile phone protocols are designed for very simple data and not practical for struc-
tured data. It is difficult to adapt application specific data with an internal record
structure to these protocols. A good solution for small amounts of data provides
beaming, since any application can use this communication mechanism to exchange
records with other handhelds. Due to the record-by-record character, beaming is not
suitable for a reasonable amount of data.

Outlook is a solution especially designed for office environments and can hardly be
adapted to other everyday tasks. It is not possible to add new applications to Outlook.
In addition, Outlook requires a considerable amount of central administration.

Most of the research toolkits above request their mobile clients to be notebook
computers with, e.g., hard disks. The focus of these platforms is to maintain data con-
sistency in a weakly connected environment. Problems related to handheld devices
such as small memory and reduced computational power are not handled satisfacto-
rily. Automatic conflict detection and resolution need a considerable amount of
resources on the handheld devices. We believe that such mechanisms are (currently)
not suitable for handheld scenarios.

Concepts, such as the Rover toolkit which require mobile code and marshal-
ling/unmarshalling mechanisms currently cannot be adapted to handheld devices,
since they are significantly different from their servers. The concept of mobile code
requires platform independent code and identical runtime libraries on both platforms.
Even though languages such as Java are running on many platforms, handheld
portings will provide other runtime libraries, thus mobile code mechanisms will fail.

The platforms above left many problems described above unsolved. Especially
privacy and awareness are open issues.

5 The QuickStep approach

The QuickStep platform [15] allows to develop mobility aware and communication-
oriented handheld applications. Developers can use communication and collaboration
primitives provided by the platform and can concentrate on application-specific
details. A set of predefined awareness widgets can be integrated into an application
with a few lines of code. The QuickStep approach can be described as follows:
x QuickStep supports applications with well-structured, record oriented data. It has

explicitly not been designed for supporting multimedia data, graphical oriented
applications or continuous data streams.

x QuickStep provides awareness widgets for collaboration awareness as well as
context awareness.

x QuickStep applications are fully collaboration and mobility aware.
x QuickStep comes along with a generic server application which allows to support

arbitrary client applications without modifying or reconfiguring the server.
x The QuickStep architecture ensures privacy of individual data.

Before describing the QuickStep platform itself, we present two sample applications
developed with QuickStep.

Fig. 1. A collaborative calendar tool

5.1 Sample applications

The first sample application allows a group of users to exchange date information
(e.g. of vacations or travellings). This tool is useful in meetings, in which members
want to schedule appointments for future meetings. Each member owns a handheld
device, which already contains a list of appointments as well as entries indicating the

D� -RHUJ
V KDQGKHOG E� 6WHSKDQ
V KDQGKHOG

time one is unavailable. The problem is to find a date, when all members are
available. Figure 1 presents an application that can help to find such a date.
The figure shows the view of two users on their personal handheld device. The upper
half of the window displays the days of a month. Each range of dates when someone
is unavailable is indicated by a bar. To get a better overview, the view can be
switched to a two-months display. The lower half of the window is the legend for the
upper half.

The two users Joerg and Stephan can see their own bars and the bars of each other.
Foreign bars are labelled by the user name rather than the local label. For other users
only the date range is of interest, not why someone is unavailable. Each user can
make new entries which are distributed to the other user in real-time. With the help of
this application it is very easy to find dates, where all members are available.

Fig. 2. A business card collector

The second example, the business card collector (figure 2), is a useful application for
conferences. The application shows a list of all users assembled at a specific location.
A user can view these cards and collect interesting cards in a persistent area. If the
user permits, the business card collector publishes the card automatically, when
entering a location.

To develop such an application 'from-scratch', a developer has to implement many
tasks, e.g., communication protocols have to be integrated, shared data have to be
managed. The application should offer awareness widgets. All these services have to
be developed in addition to the main task. Developing all these functions would
overwhelm a developer. QuickStep helps a developer to concentrate on the applica-
tion-specific details. Data primitives as well as predefined awareness widgets can be
used from the platform.

In the following, we present the QuickStep platform. After describing the basic
concepts, we discuss QuickStep with help of the three key requirements privacy,
awareness and usability.

5.2 The QuickStep infrastructure

As described above, handheld operating systems offer only limited support for com-
munication. Most systems cannot handle communication in the background. If the
handheld device is always the initiating part of the communication, we need an addi-
tional computer, which acts as a communication relay between handhelds. This com-
puter, the QuickStep server, contains a generic server application which is able to
serve arbitrary QuickStep applications.

/RFDWLRQ

4XLFN6WHS

VHUYHU

2UJDQLVDWLRQ

Fig. 3. QuickStep communication infrastructure

Figure 3 shows the QuickStep communication infrastructure. A QuickStep server
operates in so-called locations. A location links all handheld devices together which
are 'in range', i.e. which can be accessed by the specific communication technology.
This can be the range of an infrared transceiver or a Bluetooth sender. Many locations
linked together form an organisation. Organisations connect those locations which are
in the same company, building, conference or public place. Table 3 shows typical
examples for locations and organisations.

Table 3. Examples for locations and organisations

Train Company Conference
Location wagon meeting room, hallway presentation room, foyer
Organisation whole train company building whole conference

Connections between handhelds and QuickStep servers are usually wireless, where
the QuickStep servers are connected among themselves via traditional local area net-
works. The QuickStep server can be viewed as 'inventory' of a specific location. Once
installed, it normally has not to be reconfigured or administered. The server runs with-
out an operator and does not need a user interface, thus can work invisibly behind a
panel.

5.3 Underlying data

As mentioned above, most handheld operating systems offer an entity called database
to handle application-specific data. The database is a common programming abstrac-
tion in handheld applications, thus the ideal abstraction for communication-oriented
applications as well. QuickStep follows the same paradigm when collecting and dis-
tributing data. The QuickStep application programming interface (API) has similar
database functions as the database API. An application developer can use well-known
services to handle application specific data. Data stored in QuickStep databases are
automatically distributed among a group by the QuickStep platform. Similar to native
database services, the actual content of records is not of interest for the distribution
mechanism and can only be interpreted by the application. Especially, the QuickStep
server does not know the record structure.

Conflicts
Concurrent updates on shared data sometimes cause conflicts. Many platforms
described above have complex mechanisms to detect and resolve conflicts. In our
opinion, such mechanisms cannot be used inside handheld devices. Our concept for
solving conflicts is simply to avoid them: it is not possible to concurrently manipulate
data. For this, each record of data can only be changed by the handheld device which
originally created the record. Copies residing on other handheld devices can only be
viewed. To modify data which were created by another user, one has to make a
private copy, which is treated as a new record.

Mirroring and Caching
Due to the low computational power of handhelds, heavy processing tasks should run
on the server. On the other hand, with respect to the low network bandwidth, it is not
possible to transfer a large amount of processing results between server and handheld.
To reduce network traffic and to perform as many computation as possible on a
server, we developed a combined mirroring and caching mechanism. Each handheld
has its local database which stores the user's data. A cache database stores all data of
other users, the local user has currently in view. E.g., the cache database in the calen-
dar tool stores dates of other users in a specific month. Finally, the QuickStep server
has a copy of each local database, the mirror database. The mirror and cache data-
bases are incrementally updated, each time a handheld device is connected to the
server. The application developer has not to worry about the cache and mirror data-
bases; they are completely set up and maintained by the QuickStep runtime system.

5.4 Developing with QuickStep

Figure 4 shows the environment, in which a QuickStep application is embedded.

$SSOLFDWLRQ

1HWZRUN .HUQHO

)UDPHZRUN

4XLFN6WHS

3DOP26 RU :LQGRZV &(

&RPPXQLFDWLRQ

$3,
'DWDEDVH $3, 8VHU ,QWHUIDFH $3,

'DWDEDVH $3, $ZDUHQHVV $3,

2WKHU VHUY LFHV

/RJ $3,

Fig. 4. The QuickStep programming environment

Applications developed with QuickStep use the QuickStep API as well as the API
offered by the corresponding operating system. QuickStep is built upon the database
communication and user interface APIs. QuickStep does not use the operating
system's communication API directly. Instead it uses an intermediate layer, called the
network kernel framework. This layer which has been introduced by the DreamTeam
platform [14] offers a generic interface for communication services such as starting
and stopping connections, transferring data etc. With the help of the network kernel
framework it is possible to exchange the underlying communication API without
changing the QuickStep platform. E.g., we can exchange a TCP/IP communication by
a direct serial or Infrared connection and only have to adapt the network kernel
framework.

5.5 Privacy

To ensure privacy, QuickStep does not transfer any private data across the network.
Every record can be marked as private (the default value). Private records reside only
on the handheld and will not be transferred in any case.

Non-private records are not transferred until an anonymising process relieves them
from personal fields. Since the record structure is opaque to the underlying system,
the anonymising function has to be provided by the application. E.g., in the calendar
application, the anonymising function blanks out the labels of appointments and trans-
fers the date range only. E.g. the entry

May 11-13: "Jörg is on the EHCI"

will be transformed to

May 11-13: "Jörg is away"

since others do not have to know anything about the reason of absence.
As an additional concept, each record has a 'time to live' entry, after which a record

is deleted automatically from the QuickStep server and other handheld devices. This
is done because a user wants to be sure that her or his data are not available eternally
on other computers (even in anonymised form). The time to life entry can be one of
session, min, hour, day and forever. If the value is session, the corresponding record
will be immediately removed from the server and handheld caches after the corre-

sponding handheld is disconnected. The other values indicate the time, a record will
reside after disconnection. The lifetime is controlled by special tasks inside the plat-
form, the lifetime supervisors which exist on the handheld devices and on the
QuickStep servers.

A similar concept applies to the space property. Each record has a 'space to live'
entry, which tells to which servers a corresponding copy is transferred. The space to
live entries can be one of location, organisation and everywhere. If the value is loca-
tion, only the QuickStep server which serves the current location gets a copy in the
corresponding database. If the value is organisation, the record is transferred to all
servers inside the organisation. The value everywhere is for future use and currently
not supported. We work on a concept which allows to link multiple organisations
together in order to exchange data. Currently, mirroring and group management
requires a tight coupling between the servers, thus is only suitable for local area net-
works. Transferring data between organisation requires completely different mecha-
nisms.

5.6 Awareness

Context information are both important for users as well as for the application, which
may make decisions based on contextual data. A user who collaborates wants to know
about the context she or he is currently working in. For this, a user can open a frame
as presented in figure 5.

Fig. 5. The context frame

The context frame is the central instance for all context-related information:
x What is the current connection state (connected or disconnected)?
x To which server is the handheld currently connected (server name, organisation)?
x What is my current location?
x Who can be called in case of problems (e.g. network failures)?
x Which other users are currently in the same location or organisation?
x What are their connection states?

The location information are important when a user enters an unknown location. Con-
sider a scenario where a huge building is equipped with a number of QuickStep
servers (e.g. one per floor). Each QuickStep server provides information about the
current location and thus can be used as a beacon for navigating inside the building.

For collaborating users, the connection state is very important. If a user is discon-
nected, all changes applied to data cannot be viewed by other users. Thus, information
about the connection state should be available on the main window of an application.
We designed an integrated button and state indicator (figure 1, lower right button).
This widget allows to connect and disconnect to a QuickStep server and indicates the
current state with the help of a small icon.

The button/state indicator as well as the context frame are predefined awareness
widgets and can be integrated in an application with help of the QuickStep library. In
addition, an application can retrieve state and context information via the QuickStep
API and can react on events (e.g. disconnecting from a network). With this, an appli-
cation developer can create his or her own awareness widgets.

5.7 Usability

QuickStep is explicitly designed for handheld scenarios and respects hardware and
software limitations. As described above, heavy computation is avoided and network
limitations are considered. Using a well-formed and tested platform a developer can
rely on stable services. The database abstraction offers a suitable application frame-
work. All services related to communication are embedded inside the platform. To
easily find errors in the application itself, a developer can use the log API (see figure
4). Handheld logs are stored on QuickStep servers, thus problem analysis is possible,
even when an application or the entire handheld device crashes.

Respect everyday requirements:
Everyday tasks often run unplanned. In order to encourage spontaneous communica-
tion between users, central administration has to be avoided. For this, groups of inter-
acting users are not defined explicitly in QuickStep. All users connected to a specific
QuickStep server at the same time and using the same QuickStep application form a
collaborative session. This concept allows to run a server without defining groups
centrally. It is possible for a user to join a group without having explicit permission
by existing users. Since a mechanism to anonymise data is integrated into the plat-
form a user cannot spy out private data. QuickStep does not provide services for
leaving a collaborative group. When a user disconnects, the server first assumes a
temporary disconnection which happens frequently. Only if a user is disconnected for
a longer time (e.g. an hour), the server takes that user off the session. The period of
time, a user has to be disconnected until a leave operation is performed, is defined by
the corresponding application. When a user leaves, the corresponding mirror database
is deleted from the server.

6 Conclusion and future work

Handheld applications require fundamental other approaches than desktop applica-
tions. If, in addition, applications should exchange information between users, addi-
tional issues have to be considered. We identified three properties, an ideal communi-
cation-oriented handheld application has to meet: privacy, awareness and usability.

As a realisation which meets these requirements, the QuickStep approach is
presented. QuickStep allows to develop mobility and collaboration aware applications
and has been especially designed for handheld devices. The generic QuickStep server
relieves the handheld devices from heavy tasks and stores data during disconnection.
The QuickStep server operates without human intervention and can serve arbitrary
QuickStep applications without modification. A server offers contextual information,
which can be used by handheld applications. Data distribution is handled by a caching
and mirroring mechanism.

In the future, we will follow two directions. First, we more want to include tradi-
tional computers into the approach. Currently handheld computing both relies on
handheld and desktop applications. Data input is more conveniently on desktop com-
puting, thus an appropriate concept has to support both kinds of computers.

Second, we want to extend QuickStep to a global communication infrastructure.
With this, two or more users operating at different places in the world could exchange
data. Since wide area connections are considerable slow compared to a local area
network, we have to discover new concepts. New technologies such as UMTS may
help to address this problem.

References

1. Abowd G. D., Mynatt E. D.: Charting Past, Present and Future Research in Ubiquitous
Computing, ACM Transactions on Computer-Human Interaction, Special Issue on HCI in
the new Millennium, Vol. 7, No. 1, March 2000, 29-58

2. Bey C., Freeman E., Mulder D., Ostrem J.: Palm OS SDK Reference, 3Com, http://www.
palm.com/devzone/index.html, Jan. 2000

3. Boling D.: Programming Windows CE, Microsoft Press, 1998
4. Brors D.: Software Highlights für Palm-Rechner, C’T Vol. 7, Apr. 2000, 138-141
5. C-Technologies, ARIPOS Programming, http://www.cpen.com
6. Demers A. J.: Research Issues in Ubiquitous Computing, Proc. of the thirteenth annual

ACM symposium on Principles of distributed computing, Aug. 14-17, 1994, Los Angeles,
2-8

7. Ellis C. A., Gibbs S. J., Rein G. L.: Groupware - some issues and experiences, Communi-
cations of the ACM, Vol. 34, No. 1, Jan. 1991, 39-58

8. Joseph A. D., Tauber J. A., Kaashoek M. F.: Mobile Computing with the Rover Toolkit,
IEEE Transactions on Computers, Vol. 46, No. 3, March 1997 337-352

9. Kistler J. J., Satyanarayana M.: Disconnected Operation in the Coda File System, ACM
Transaction on Computer Systems, Vol. 10, No. 1, Feb. 1992, 3-25

10. Lotus Development Corporation: Lotus Notes, http://www.lotus.com/home.nsf/welcome/
lotusnotes

11. Microsoft Outlook, http://www.microsoft.com/outlook
12. Munson J. P., Dewan P.: Sync: A Java Framework for Mobile Collaborative Applications,

special issue on Executable Content in Java, IEEE Computer, 1997, 59-66

13. Point-to-point short message service support on mobile radio interface, http://www.etsi.org,
Jan. 1993

14. Roth J.: DreamTeam - A Platform for Synchronous Collaborative Applications, AI & Soci-
ety (2000) Vol. 14, No. 1, Springer London, March 2000, 98-119

15. Roth J., Unger C.: Using handheld devices in synchronous collaborative scenarios, Second
International Symposium on Handheld and Ubiquitous Computing 2000 (HUC2K), Bristol
(UK), 25.-27. Sept. 2000

16. Stabell-Kulø T., Dillema F., Fallmyr T.: The Open-End Argument for Private Computing,
First International Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Ger-
many, Sept. 1999, Springer, 124-136

17. Tasker M., Dixon J., Shackman M., Richardson T., Forrest J.: Professional Symbian Pro-
gramming: Mobile Solutions on the EPOC Platform, Wrox Press, 2000

18. Terry D. B., Theimer M. M., Petersen K., Demers A. J.: Managing Update Conflict in
Bayou, a Weakly Connected Replicated Storage System, Proceedings of the fifteenth ACM
symposium on Operating systems principles, Copper Mountain, CO USA, Dec. 3-6, 1995,
172-182

19. Weiser M.: The computer for the Twenty-First Century, Scientific American, 1996, Vol.
265, No. 3, Sept. 1991, 94-104

20. Wireless Application Protocol Architecture Specification, WAP Forum, http://www.
wapforum.org/, April 30, 1998

