
Seven Challenges for Developers of Mobile Groupware

Jörg Roth

University of Hagen
Department for Computer Science

58084 Hagen, Germany
Joerg.Roth@Fernuni-hagen.de

1 Mobile Groupware

Synchronous groupware applications play a major role
for, e.g. shared document editing, co-operative software
development or shared workspaces. Groupware applica-
tions allow geographically distributed teams to collabo-
rate without significant time delays. Several groupware
platforms have been developed to simplify the develop-
ment of synchronous groupware applications and relieve
the developer from standard problems such as communi-
cation, synchronisation, coordination or concurrency
control.

Currently, there exists a growing market for mobile
devices such as PDAs, mobile phones, and electronic
pens. Upcoming communication technologies (e.g. wire-
less local or personal area networks, mobile telephone
networks) promise new services for mobile communica-
tion. Extending stationary groupware concepts and plat-
forms to mobile environments would offer great poten-
tials. However, too straightforward approaches, e.g.
simply running existing groupware platforms on mobile
devices, fail due to the different nature of mobile devices
and networks.

In the year 2000, we started to investigate, how mobile
users and developers of mobile groupware applications
could be supported with the help of groupware platforms.
In order to examine the specific problems in more detail,
we created two platforms: QuickStep was especially
designed to support groups of handheld users, the second
platform Pocket DreamTeam was an extension of our
stationary groupware framework DreamTeam. For both
platforms, we had the following design goals:
• We want to support synchronous collaboration. Due to

some device and network characteristics, we relaxed
the notion of strict synchronous collaboration and in-
troduced the term relaxed synchronous collaboration
[6] for group members who collaborate synchro-
nously, but may be disconnected from the network for
short periods.

• We want to support developers of new mobile group-
ware applications with the help of a development and
a runtime environment. The development environment
should offer communication and data abstractions as
well as an application programming interface (API)
for group specific services and widgets. The runtime
system should perform standard tasks such as control-
ling communication links, distribute shared data,

manage session and user profiles, perform group
rendezvous etc.

• As a technical platform for mobile end-user devices,
we decided to use handhelds as shown in fig. 1. We in
particular decided not to use notebooks. Due to their
size, weight and battery life, mobile working capabili-
ties with notebooks are limited. We especially want to
investigate problems related to small mobile devices
and want to transfer our solutions to even smaller
devices such as electronic pens or mobile phones later.

Our development and testing system consists of
• handheld devices based on PalmOS equipped with

wireless LAN (IEEE 802.11b) adapters,
• a number of stationary workstations (Windows PCs,

Solaris workstations) and
• a wireless LAN infrastructure connected with the

campus Internet.

Although our testing environment primarily based on
wireless LAN, we strictly paid attention to be indepen-
dent as possible from the network. In principle, our plat-
forms could run on other wireless networks such as IrDA
(Infrared), Bluetooth or GSM. Since not all networks
support the Internet Protocol (IP) sufficiently, we isolated
network related functions in a component we call
Network Kernel Framework (NKF). NKF can roughly be
compared to a high-level network driver and offers a
uniform interface to the platforms.

Fig. 1: Handheld device running a mobile groupware
application



In the following, we briefly describe the mobile
groupware platforms QuickStep and Pocket DreamTeam
before we generalise our experiences.

1.1 Case Study I: QuickStep

The QuickStep platform [3, 6] supports developers of
mobility aware collaborative handheld applications. They
can use communication, collaboration and dialog primi-
tives provided by the platform and can concentrate on
application-specific details. A developer can integrate
predefined awareness widgets into an application with a
few lines of code. We can summarise the QuickStep
approach as follows:
• QuickStep supports applications with well-structured,

record oriented data, as being used by built-in soft-
ware for handheld devices (e.g. for to-do lists, memos,
telephone lists). QuickStep was explicitly not de-
signed for supporting multimedia data, graphical ori-
ented applications or continuous data streams.

• QuickStep mainly supports (relaxed) synchronous
collaboration. In addition, asynchronous collaboration
is possible.

• QuickStep provides awareness widgets for collabora-
tion and context awareness.

• QuickStep comes along with a generic server applica-
tion, which supports arbitrary client applications with-
out modifying or re-configuring the server.

• Data distribution is based on the database abstraction
integrated into most handheld operating systems. The
consistency strategy relies on a strong relation be-
tween data rows and participating users. To reduce
network traffic and to perform as many computations
as possible on a server, we developed a combined mir-
roring and caching mechanism that we designed
according to the synchronisation pattern [4].

• Users can form collaborative groups without central
administration, e.g. all users inside a meeting room
can collaborate spontaneously. As untrusted users can
participate, we have to address security problems.
QuickStep contains several mechanisms to ensure
privacy of individual data. Data rows are, e.g., ano-
nymised before they are transferred across the
network.

Fig. 2. QuickStep sample application

Fig 2. shows a QuickStep sample application, a collabo-
rative meeting planner. Two or more users can exchange
dates and plan further meetings. Each entry, indicated by

a bar, is distributed in real-time. The lower half of the
window is the legend for the upper half. Foreign entries
are anonymised automatically, i.e. the entries are labelled
by the user name rather than by the private label (e.g.
"Vacation"). Other sample applications are, e.g., a
business card collector and a brainstorming tool.

1.2 Case Study II: Pocket DreamTeam

Pocket DreamTeam is the mobile version of our group-
ware platform DreamTeam [1, 2]. DreamTeam has a fully
decentralized architecture without the need for a central
server. Shared data are distributed among the group
members using an automatic replication mechanism.
DreamTeam offers a number of coordination services. It
has been successfully used for practical software courses
and diploma theses at the University of Hagen. There
exists a huge variety of about 20 DreamTeam applica-
tions such as distributed sketch, diagram and text editors,
a collaborative slide presentation program, a brainstorm-
ing tool and a group web browser. After we finished the
implementation of the desktop variant of DreamTeam, we
planned to develop a handheld version Pocket Dream-
Team, which should meet the following requirements:
• Pocket DreamTeam and the desktop version of

DreamTeam should run inside the same network. It
should be possible to form arbitrary sessions of hand-
held and desktop users, with e.g., only handheld users,
only desktop users or a mixture.

• The original desktop variant of DreamTeam should
still run without any changes.

• Since handheld devices differ fundamentally from
desktop computers, it is not reasonable to follow the
desktop usage paradigms based on, e.g., overlapping
windows with graphics. We accepted to re-implement
some parts of DreamTeam for handheld devices.
However, we wanted to keep the amount of new
developments as small as possible.

Although DreamTeam has a decentralized architecture, it
contains a semi-central coordination mechanism: a
session chair creates a session profile for a planned
session and sends invitations to possible members. On
one hand, this mechanism limits spontaneous collabora-
tion, on the other hand it is much more easy to obtain
privacy since the chair has control over the participation
process.

Adapting the full replication mechanism to weakly
connected devices was a real challenge. The concurrency
control of the original DreamTeam uses pessimistic
locks, which are not appropriate for mobile users: dis-
connected users, which hold a lock, can disable an entire
session. As a solution, Pocket DreamTeam uses a com-
bined optimistic/pessimistic concurrency control strategy
which takes the advantages of both approaches: on the
stationary network segment with high reliability and low
latency, pessimistic concurrency control is appropriate.
On the mobile network segment, optimistic concurrency
control leads to much better response times but requires
more complex algorithms.

a) Joerg's handheld b) Stephan's handheld



a) Mobile Applications b) Stationary Applications

Fig 3. DreamTeam applications on mobile device and stationary desktop

Fig. 3 shows Pocket DreamTeam windows (left) and the
corresponding desktop DreamTeam windows (right).
Corresponding screens on different platforms may be
completely different. Overlapping windows, context
menus and icons are not useful on small screens. E.g., we
replaced icon-based dialogs by simple textual lists.

The users use the upper frames to view contextual in-
formation and participate sessions. The On-line list shows
all users, which are currently on-line, i.e. can participate
in a collaborative session. The Sessions frame shows all
running and planned session. A user can select a running
session from a list and join it. From the 20 DreamTeam
applications, we selected two applications for mobile
extension:
• The Diagram tool allows a team to collaboratively

create flow charts, entity relation ship or class dia-
grams.

• With the Draw tool, a group can draw and share
simple free-hand sketches.

To reduce development costs, a developer can re-use the
functional core of the desktop variant in the handheld
version. A concept based on resources (high-level com-
ponents, which model the functional core) ensures inter-
operability across device borders. Device-specific parts
however, e.g. dialog frames, have to be re-implemented.

2 Seven Challenges

After we finished the QuickStep and Pocket DreamTeam
projects, we tried to abstract from platform details and
find a list of general challenges for a developer of mobile
groupware. We identified the following:

Challenge 1: Communication: Currently the world of
mobile communication technologies and protocols is

rapidly growing and far from being mastered by develop-
ers and end-users. Upcoming technologies like UMTS or
Bluetooth promise new mobile communication potentials,
but often do not cooperate with existing networks.
Mobile and ad-hoc communication leads to issues that
affect all communication layers. We have to address
issues such as ad-hoc routing, mobility management,
service discovery or connecting devices across network
borders. Possible solutions (e.g., Mobile IP, I-TCP, SDP,
DSDV etc.) are currently not widely integrated into
existing networks.

Challenge 2: Architecture: Distributing software and
hardware components among the involved sites signifi-
cantly influences the overall system behaviour. Finding
an appropriate architecture for mobile groupware is a
highly creative process. Although there exist semi-formal
methods to lead system architects through the decision-
making process (e.g. [4, 5]), it is difficult to detect all
pros and cons of a specific architecture before realisation
is finished.

Challenge 3: Coordination: Coordination functions are
essential to groupware systems, e.g. to form collaborative
groups, publish announcements, coordinate participation
to sessions or perform group rendezvous. In contrast to
stationary users, mobile users are only loosely connected
to the groupware infrastructure, thus require more
complex coordination mechanisms. Closely related to
coordination is the topic security (see challenge 6).

Challenge 4: Data distribution and consistency: Dis-
tributing shared data among a group and maintaining
consistency is one of the main functions of a groupware
system. If mobile users are involved, we have to deal
with weakly connected devices and devices which are
often turned off, thus not accessible for others. This
dramatically increases the problem of data distribution



and consistency especially in synchronous groupware
systems.

Challenge 5: User interfaces: Mobile devices funda-
mentally differ from stationary computers [3]. We have
to consider small screens, new input devices and different
usage paradigms. Applications based on user interface
plasticity could save development costs, but are still
subject of research. In addition to the actual application
interface, mobile groupware has to offer awareness
widgets (e.g. to support collaboration or context aware-
ness).

Challenge 6: Security/Privacy: Wireless communica-
tion usually based on physical broadcast. In principle,
other users can read ongoing transmissions or modify
transferred data. Data stored in some mobile end-user
devices (e.g. PDAs) have private characteristics. If a
team exchanges confidential data, a groupware system
has to provide security mechanisms. Unfortunately, in-
creasing security reduces the potentials of spontaneous
communication, since we set up a cryptographic frame-
work with, e.g., keys or certificates.

Challenge 7: Realisation issues: These are often
neglected. Having mobile devices, we have special
development environments, operating systems and pro-
gramming paradigms. We have to consider hard device
limitations, e.g., small memories, slow processors and
limited parallel execution capabilities. Often, high-level
software engineering approaches as used for desktop
environments are not effective for small devices. Multi-
platform development environments such as Java ME do
not offer a sufficient degree of platform independence
and stability, thus development costs are still high.

Table 1 summarises, how our platforms address these
challenges. Some problems are still open and have to be
addressed in the future. Especially development support
for collaborative user interfaces is still rudimentary. Both
platforms contain complex mechanisms for data distribu-

tion and consistency. Especially the full replication
mechanism of Pocket DreamTeam with a combination of
pessimistic and optimistic concurrency control is unique.
The strength of QuickStep is the mechanisms to simplify
spontaneous collaboration and to obtain privacy.

References

1. Lukosch S., Roth J.: Reusing Single-user Applications
to Create Multi-user Internet Applications, Innovative
Internet Computing Systems (I2CS), Ilmenau, June
21-22, 2001, LNCS 2060, Springer, 79-90

2. Roth J.: DreamTeam - A Platform for Synchronous
Collaborative Applications, AI & Society (2000), Vol.
14, No. 1, Special Issue on Computer-Supported
Cooperative Work, Springer London, March 2000, 98-
119

3. Roth J.: Information sharing with handheld appli-
ances, 8th IFIP Working Conference on Engineering
for Human-Computer Interaction (EHCI'01), Toronto,
Canada, May 11-13, 2001, LNCS 2254, Springer,
263-279

4. Roth J.: Patterns of mobile interaction, Proceedings of
Mobile HCI 2001: Third International Workshop on
Human Computer Interaction with Mobile Devices,
M. D. Dunlop and S. A. Brewster (eds), IHM-HCI
2001 Lille, France, Sept. 10, 2001, 53-58

5. Roth J., Unger, C.: An extensible classification model
for distribution architectures of synchronous group-
ware, in Dieng R. et al. (eds): Fourth International
Conference on the Design of Cooperative Systems
(COOP2000), Sophia Antipolis (France), IOS Press,
May 23-26, 2000, 113-127

6. Roth J., Unger, C.: Using handheld devices in
synchronous collaborative scenarios, Personal and
Ubiquitous Computing, Vol. 5, Issue 4, Springer
London, Dec. 2001, 243-252

Table 1. Comparison of QuickStep and Pocket DreamTeam

Challenge QuickStep Pocket DreamTeam
Communication Network Kernel Framework (NKF)
Architecture client/server,

hierarchical server network
remote proxy,
fully decentralized

Coordination spontaneous groups and sessions,
no session chair required

session chair controls participation, limited support
for unplanned sessions

Data distribution/
consistency

synchronisation, mirroring/caching,
ownership of data

full replication, combined pessimistic/optimistic
concurrency control

User interfaces not primarily addressed, relies on interface creation tools of the target platform, predefined
group & mobility widgets exist

Security/Privacy anonymising,
life-time supervision

relies on security provided on communication level
(NKF)

Realisation issues database abstraction,
generic server application

resource abstraction,
multi-platform development required


