
Context-aware Apps with the Zonezz Platform

Jörg Roth
Univ. of Appl. Sciences Nuremberg

Kesslerplatz 12
D 90489 Nuremberg, Germany

+49 911-5880 1169

Joerg.Roth@Ohm-hochschule.de

ABSTRACT
Current smart phones can easily detect the geographic location,
but very often applications are more interested in the meaning of
the location for the user. In this paper we present the Zonezz
platform that identifies meaningful locations such as 'home' or
'work'. It provides an easy to understand context model and fully
runs on a mobile device without the need for a central service.
Other apps can use this platform to create context-awareness. We
show the benefits of this platform with the help of a context-
aware calendar tool.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Software Libraries

General Terms
Algorithms, Design, Human Factors

Keywords
Context-awareness, location-awareness, mobile application

1. INTRODUCTION
The idea of context-awareness is nearly as old as mobile devices.
If a mobile application knows about the current context (espe-
cially location and time), it can provide more specific information
that is suitable for the current situation. This is especially impor-
tant as mobile devices have certain limitations that affect the us-
ability for mobile users.

Even though the theory of contexts is investigated in-depth in the
last decade, the corresponding concepts often did not widely
reach end-users. This was because for a long time typical end-user
devices were not able to capture required context information.
This changed when smart phones such as the iPhone or Android
phones get more and more available. These devices usually are
able to capture context information, especially related to posi-
tioning. In addition, they provide powerful development environ-
ments. With market platforms we can reach a broader user com-
munity without remarkable deployment costs.

A device can get the user's current geographic location with the

help of GPS or fingerprinting. But as a major problem, an appli-
cation cannot detect the meaning of the current location for the
user. Typical contexts related to locations are, e.g., 'home', 'work',
or 'shopping', but these locations are different for different users.

In this paper, we present the Zonezz platform that provides a map-
ping of physical positions to context-related locations. Zonezz is
fully implemented for the Android platform. Mobile applications
(in the following called apps) can use this platform to react on
contexts and context changes. Some examples:

 A calendar app may show business entries more obtrusively
when the user stays in the company. Or, it may hide a shop-
ping list until the user enters a shopping site.

 A context-based reminder could trigger an alarm, if the user
enters a special location. It could e.g. remind: 'check the
heating' not until the user comes home.

 Mobile devices could switch between communication chan-
nels at different sites and can, e.g., use the business SIM card
and business email account at work.

 In social media, check-in services could inform friends,
when a user is at home.

 Mobile devices could switch between device home screens,
e.g. one that only shows business apps at work, and one that
includes games and MP3s at home.

It is reasonable to shift administration and detection of contexts to
a central platform on a mobile device rather than separately inside
each app. Other apps can use such a platform with the help of
powerful communication and triggering mechanisms between
software components that are available in modern smart phone
operating systems.

2. RELATED WORK
Many projects in the area of context- or location-awareness focus
on positioning issues (e.g. [12]). Indoors it still is a problem to get
a precise position that identifies, e.g. a special room. But for lar-
ger scales current smart phones provide easy to use mechanisms
that even work indoors when GPS fails. Therefore, many recent
publications consider positioning as available building block and
either focus on the processing of positions or investigate new
sensors that provide additional information. In [11], e.g., apps can
distinguish types of movement (such as 'walking', 'car' and 'train')
with the help of the accelerator sensor that is available in most
smart phones. The movement type can be viewed as additional
information to define a context.

Other projects try to identify symbolic (or often called semantic)
locations from physical positions. In [18] three major contexts are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiHeld’11, Oct. 23, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0980-6 /11/10…$10.00.

distinguished: 'home', 'work' and 'on the move'. [1] presents an
approach to geometrically cluster GPS locations of multiple users
to identify interesting locations. In [2] visited locations are stored
in a kind of diary. This can by classified later by a Bayesian net-
work that also takes into account the time of visit. A similar ap-
proach follows [10], but it first maps physical locations to seman-
tic locations with the help of a central geo database. Also indoor
locations are considered: in [9] small indoor regions, so called
activity zones (e.g. the 'lunge chair') are classified. Activity zones
may have complex geometric shapes and trigger context rules that
can perform further activities.

Further approaches concentrate on the usage of context informa-
tion for certain applications. [5] takes into account the current
position to optimize queries to public transportation schedules.
The benefit of contexts for mobile collaboration is explored in [6].
[8] uses the location as means for control access to certain re-
sources.

Projects such as CybreMinder [4], Nexus [7] or [17] provide a
general platform to capture and distribute context information.
Usually they base on a centralized infrastructure that collects in-
formation and executes the rules to trigger events. An exception is
ContextPhone [13] that primarily provides a system to plug-in
context components on a mobile device. If a platform relies on
central services, privacy issues become more important.

Even though conceptual interesting, some of the approaches
above provide too many degrees of freedom to define contexts
and rules. A typical user wants to understand such a system in
some degree. If we want to avoid security issues, it is reasonable
to keep the entire computation on the mobile device.

3. THE ZONEZZ PLATFORM
3.1 Goals and Requirements
Zonezz is designed according to the following goals:

 The entire context computation should be performed on the
mobile device. No central service or central database should
be required.

 The concept should be understandable and manageable by
typical users. Too complex context configurations or rules
should be avoided.

 The user should be strongly supported by the platform to set
up the configuration, but should be able to overwrite sugges-
tions if desired.

We do not want to distinguish fine-grained contexts (such as
'meeting in room xy') that require a very precise indoor position-
ing system. Typically we want to distinguish 2 to 4 contexts of
which 'work' and 'home' usually are the most important.

Our approach is not designed for security related applications, e.g.
for access control or payment. Position measurements can easily
be manipulated inside the phone and the resulting contexts are
thus not verifiable. Even tough there exist complex mechanisms
to generate manipulation-secure positions [3], they are not
incorporated into our platform.

All context-relevant data are stored on the mobile device. As the
whole computation is also performed on the smart phone, we have
not to deal with privacy issues related to the network or central
services. No information from our platform is sent via a wireless
network. But, if attackers get access to the mobile device itself
(e.g. steal it or get a root login), they may be able read private

context-related data of our platform. These attacks, however,
would be a serious problem for nearly all mobile applications.

3.2 Modeling Zones
Our model is influenced by former research (especially [14]) but
is strongly simplified as the entire execution should take place on
the mobile device.

Figure 1. Definition of zones

We use a simple geometric model to define different contexts
called zones. Zones are two-dimensional circular regions on the
Earth's surface with arbitrary center and radius. The model is easy
to understand by the mobile user and allows the execution of effi-
cient algorithms. To define a new zone, a user points on a map
and specifies name, color and radius (fig. 1). The color is only
used for presentation purposes. For the radius, there exist discrete
values 50m, 100m, 200m,…, 50km.

One could argue that circles usually do not precisely represent
context borders. But:

 More complex areas such as polygons are difficult to enter
and to administrate on a mobile device.

 For circular areas we can realize efficient algorithms to sug-
gest new zones (section 3.4).

 Position measurements are Gaussian distributed around a
real position. Areas that include all position measurements of
a certain area tend to circles anyway, even though the
original areas are not circles. Thus, the actual benefit for
more complex geometries would be small.

Every time a measured position is inside such a circle, the corre-
sponding zone is considered as part of the current context. As
zones may overlap, the context is defined by a set of hit zones.
We expect the hit zone with the smallest radius as more specific
for the context, thus the set of hit zones is ordered ascending by
their radius.

3.3 The Architecture
Fig. 2 shows the Zonezz architecture. The platform contains the
Zonezz App and Core Services with a total size of 71 kB. The app
is mainly used to set up the zone database (Zone DB), which is
modeled with SQLite and contains the table of zones. New zones
can be suggested by a Suggestion System. The Core Services al-
low two types of usage:

 Other apps can use the platform to query all defined zones
and the ordered list of hit zones that represent the context.
For this usage, Zonezz provides a query interface similar to
databases.

 Other apps can asynchronously listen to changes of hit
zones. I.e., they receive an event whenever the user enters or
leaves a zone.

Not every app must use both types.

The Android structure to query data across apps is the Content
Provider. Similar to an SQLite database the Zonezz content pro-
vider supports cursor-based queries on the tables all zones, hit
zone and state (see below).

The Zonezz Background Service permanently computes the cur-
rent set of hit zones. For every change it sends a system-wide
broadcast using Android's Broadcast Receiver model. Any app
may register for these events to asynchronously react to changes.

Background services on mobile phones continuously run, even
when the device is in stand-by mode. Thus, it is important that the
service does not consume too much CPU power as other apps
may be affected and battery will be drained. This is an additional
argument for the simple zone model. In the current version, the
background service wakes up every 2 minutes to check if the lo-
cation moved to other zones. Between the checks, the phone can
switch to low power mode. The check as such does not signifi-
cantly affect battery lifetime. Note that on typical smart phones a
lot of background services periodically work.

To compute the list of hit zones, the recent position is required.
Current Android devices offer two providers: GPS satellite navi-
gation and a 'network' provider that is based on signal strength
fingerprinting. As a main decision, a user has to specify, if GPS
should be turned on (causing higher battery consumption). The
core component Position Acquisition and Filtering tries to fulfill
the user's and system's requirements according precision, age of
measurements and battery consumption. It balances these factors
with the help of a set of pre-defined rules.

An empty hit zone list can be result of two effects: either no posi-
tion measurement is available or a position is available but
outside any zone. An application maybe has to distinguish these

cases. Thus, the Zonezz content provider and broadcasting
distribute a state (table 1).

Table 1. Service states

State Description

RUNNING Everything OK and running.

OLD
POSITION

The last position fix is too old. The app may use
the list of hit zones but should be aware that it
may be outdated.

NO
POSITION

No position is available. The hit zone list is thus
empty.

NO
PROVIDER

The user deactivates all positioning mechanisms
or the device has no such component.

NOT
RUNNING

The Zonezz background service is not running
anymore – this should not happen (and never
happened so far).

To simplify the access of other apps to the Zonezz services, they
can use the Zonelib. This library shields the communication, pro-
vides caching and manages the registration of listeners. Zonelib
has a very small size of only 7 kB (jar file) and can simply be
included into any Android app project. Table 2 shows the most
important library calls.

Table 2. Important Zonelib calls

Main methods
ArrayList<Zone> getAllZones()

ArrayList<Zone> getHitZones()

int getState()

void addZoneListener(ZoneListener listener)

ZoneListener methods
void allZonesChanged(ArrayList<Zone> zones)

void hitZonesChanged(int state,
 ArrayList<Zone> zones,
 ArrayList<Zone> addedZones,
 ArrayList<Zone> removedZones)

Figure 2. The Zonezz architecture

3.4 Suggesting Zones
Zonezz contains a Suggestion System that makes suggestions for
new zones based on the position history. The idea is to identify
clusters of measurements that are close together. If the user wants
to use the Suggestion System, she or he agrees that the Zonezz
platform logs visited locations for a certain time.

An ideal Suggestion System would compute new zones without
the help of the user. However, we have to face two problems:

 Two effects are not distinguishable by a fully automatic sys-
tem. First: a position may deviate due to measurements
errors (e.g. some 100 meters for the 'network' provider);
second, a user may really move away from a zone center.
Thus, it often is not clear if measurements belong to a
location.

 If multiple frequently visited locations are close together, it
is not clear, if this is one zone or multiple zones. This is be-
cause contexts are not only geometrically defined but have a
certain meaning.

We look at the example in fig. 3: an appropriate zone may be
shown on the top/left, if we assume that the zone only covers the
building below. But if all three buildings belong to the same com-
pany, the zone in the top/right could be more appropriate.

Figure 3. Suggesting zones

Therefore, we need user cooperation. Before the system identifies
zones, the user defines

 the time range of position measurements that should be ana-
lyzed (e.g. last day, last week), and

 the minimum time a user has to reside at a location to con-
sider it as a new zone (e.g. 4 hours/day).

A user who, e.g., requests a suggestion for a new zone 'work'
could demand a minimum of 7 hours per day in the last three
days.

The idea of the suggestion algorithm is as follows (fig. 3 bottom):

 Each measurement in the specified time range is considered
as center of a potential zone. We iterate through all meas-
urements and all possible radius steps. Note that our radiuses

have discrete values. For every iteration we count the
number of other measurements that are inside the circle.

 We filter out iterations that do not fulfill the minimal resi-
dence time defined by the user.

 For each iteration we compute a rank that reflects the
number of measurements (more is better) and the radius
(smaller is better). We filter out zones below a certain rank.

 Remaining iterations are mapped to zone suggestions. As
suggested center we use the mean of measurements inside
the circle and not the measurement that originally defined the
circle.

 We order the remaining zones by their rank (best first). Each
zone inside the list is presented on a map. The user is asked
one after the other, whether the suggestion should be stored
as new zone or whether the next suggestion should be pre-
sented (fig. 4).

Figure 4. Screens of the Suggestion System

We could use very different formulas to rank the potential zones.
We made the best experiences with

r

m
rank

for m measurements inside the circle of radius r.

Some words about performance. Zonezz logs a position measure-
ment every 6 minutes. If a suggestion should base on one month,
this means to check 7200 records. For n records a plain imple-
mentation requires O(n2) steps to compute all ranks. If we used
spatial indexing mechanism (such as [16]), we can reduce the
number of checks to O(n.log n). Zonezz requires 21 seconds to
create suggestions based on one month of measurements on a
Milestone device (550 MHz).

3.5 Further Functions
The Zonezz platform offers some further functions:

 The user can put a widget onto the Android home screen (fig.
5 left). This is useful to view the current zone and position-
ing state.

Figure 5. Additional Zonezz functions

 A position statistics (fig. 5 right) provides information, how
long the user resides at which zone.

 The user can set a 'bogus zone' for a certain time. This
means, the measured positions are ignored and a pre-selected
zone is returned as hit zone.

Bogus zones can be useful if, e.g., real positioning completely
fails in a certain situation, or if the user wants to simulate a
certain context.

4. THE CALENDAR CASE
DateStone Calendar [15] is a typical calendar app similar to many
other apps that allow a user to organize daily dates and tasks. Our
goal was to make it context-aware. We identified three mecha-
nisms that can be affected by the current context:

 The color style is changed according to the current zone.
There can be e.g., a different 'work' and 'home' color style.
The look and feel of app usage is heavily influenced by col-
ors, thus it is useful to have different color styles for
different contexts. There exist predefined styles such as
'black/white', 'water', 'summer' that define all screen colors.

 Date entries that are more related to the current context are
displayed more obtrusively (e.g. bold) whereas other entries
are presented unobtrusive or even hidden.

 Date alarms may be delayed until the user enters a certain
zone. E.g. an alarm to remind something special to buy may
be delayed until the user enters the 'shopping' zone.

Typical calendar apps already provide the concept of user-defined
categories. For each date entry a user can define a category such
as 'job', 'to buy' or 'hobby'. In non-context-aware calendars, these
categories are primarily used as display filter and affect some
colors in overviews.

As a great benefit, categories are already strongly related to con-
texts. Thus, we can easily map these categories to our zones. A
user can express the importance of a category for a certain zone
with the help of text styles such as hidden, transparent, or bold.
Fig. 6 shows the same day sheet displayed in different zones.

Figure 6. Different presentations dependent
on the current zone

In the 'work' zone (left), the work entries are bold, others are
transparent or even hidden. In the 'home' zone (right), home en-
tries use a standard font, whereas work entries are transparent.
The user can configure the presentation of entries with the help of
rules, e.g.

if inside Work:
 Color Style: Black/White
 Category Job: Bold
 Category Home: Transparent
 Category Hobby: Hide
 Category Shopping: Show

A zone rule is 'fired' if the user resides inside or outside a certain
zone. The ordering of rules is important as the first fired rule de-
fines the presentation. The user can configure the rules with the
help of a convenient graphical front-end that also checks the rule
integrity.

Finally, we can define for each category, whether reminder
alarms should be activated at the given time, or be delayed until
the user enters a certain other zone. With these rules, reminder
alerts are not triggered in the wrong context what may distract the
user.

The resulting flow of data is presented in fig. 7. The major chal-
lenge to extend the original calendar app was to develop the Zone
Rule Editor and Zone Rule Execution (only few hundreds line of
code), whereas the major context functions are provided by
Zonezz and accessed through the Zonelib.

5. CONCLUSIONS
The Zonezz platform allows other apps to query for the current
location context or can listen to context changes. A context-aware
calendar app shows how an app could react on different contexts.

In the future we want to additionally integrate movement contexts
into the concept. Besides our zones, contexts such as 'train-driv-
ing', 'walking' etc. could be derived from the accelerator sensor
and further define the user's current situation.

6. REFERENCES
[1] Ashbrook D., Starner T. 2003. Using GPS to Learn Signifi-

cant Locations and Predict Movement across Multiple Users.
Personal and Ubiquitous Computing archive Vol. 7 No. 5,
Oct. 2003

[2] Bicocchi N., Castelli G., Mamei M., Rosi A., Zambonelli F.
2008. Supporting location-aware services for mobile users
with the whereabouts diary. 1st intern. conf. on Mobile
Wireless Middleware, Operating Systems, and Applications

[3] Decker M. 2009. Prevention of Location-Spoofing – A Sur-
vey on Different Methods to Prevent the Manipulation of
Locating-Technologies. Proc. of intern. conf. on e-Business
(ICE-B 09), Milan, Italy, July 7-10 2009, 109-114

[4] Dey A., Abowd G. 2000. CybreMinder: A Context-Aware
System for Supporting Reminders, Proc. of the Handheld and
Ubiquitous Computing 2000, Bristol, UK, Springer LNCS
1927, 172-186

[5] Ferris B., Watkins K., Borning A. 2010. OneBusAway:
Location-aware tools for improving public transit usability.
IEEE Pervasive Computing, January-March 2010, Vol. 9 No.
1, 13-19

[6] Häkkilä, J.; Mäntyjärvi, J.2005. Collaboration in Context-
Aware Mobile Phone Applications. Proc. of the 38th Annual
Hawaii intern. conf. on System Sciences, 2005. HICSS '05

[7] Häussermann K., Hubig C., Levi P., Leymann F., Simoneit
O., Wieland M., Zweigle O. 2010. Understanding and de-
signing situation-aware mobile and ubiquitous computing
systems. Proc. of intern. Conf. on Mobile, Ubiquitous and
Pervasive Computing, March 2010, 329-339

[8] Jafarian J., Amini M. 2009. CAMAC: A Context-Aware
Mandatory Access Control Model. ISC Intern. Journal of
Information Security January 2009, Vol. 1, No. 1, 35-54

[9] Koile K., Tollmar K., Demirdjian D., Shrobe H., Darrell T.
2003. Activity Zones for Context-Aware Computing. Ubi-
Comp 2003: Ubiquitous Computing, Springer LNCS 2003,
Vol. 2864/2003, 90-106

[10] Liu J., Wolfson O., Yin H. 2006. Extracting Semantic Loca-
tion from Outdoor Positioning Systems. 7th intern. conf. on
Mobile Data Management

[11] Nick T., Coersmeier E., Geldmacher J., Götze J. 2010.
Classifying Means of Transportation Using Mobile Sensor
Data. IEEE World Congress on Comp. Intelligence, Barce-
lona, Spain, July 2010

[12] Papliatseyeu A., Mayora O. 2009. Mobile Habits: Inferring
and Predicting User Activities with a Location-Aware
Smartphone. 3rd symp. of Ubiquitous Computing and Ambi-
ent Intelligence 2008, Advances in Soft Computing, 2009,
Vol. 51, 343-352

[13] Raento M., Oulasvirta A., Petit R., Toivonen H. 2005. Con-
textPhone: A Prototyping Platform for Context-Aware Mo-
bile Applications. IEEE Pervasive Computing, April-June
2005, Vol. 4 No. 2, 51-59

[14] Roth, J. 2008. A Probabilistic Approach for Context Reason-
ing. Use In Context, GI Informatik 2008, Munich, Germany,
Sept. 12. 2008, Proceedings 134, Vol. 2, 802-807

[15] Roth, J. 2011. DateStone Calendar Manual. wireless-earth,
http://android.wireless-earth.org/datestone.html

[16] Roth, J. 2011. Moving Geo Databases to Smart Phones – An
Approach for Offline Location-based Applications. Innova-
tive Internet Computing Systems (I2CS), Berlin Germany,
June 15-17 2011

[17] van Sinderen, M. J., van Halteren, A. T., Wegdam, M.,
Meeuwissen, H. B., Eertink, E. H. 2006. Supporting context-
aware mobile applications: an infrastructure approach. IEEE
Communications Magazine, Sept. 2006, Vol. 44, No. 9, 96-
104

[18] Verkasalo H. 2009. Contextual patterns in mobile service
usage. Personal and Ubiquitous Computing. Vol. 13, No. 5,
331-342

Figure 7. Data flow in the context-aware calendar

