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ABSTRACT 

Minimal bounding rectangles are a simple and efficient tool for approximating geometries, particularly for accelerating 
spatial queries. If a spatial object fills a rectangular shape to a certain extent, then the minimal bounding rectangle is a 
reasonable approximation. Unfortunately some geo objects, such as streets or rivers have a small area but large bounding 
rectangles. In this paper we suggest an approximation with two bounding rectangles instead of a single one. Since the 
corresponding shape provides a better approximation, we get a greater average benefit. However, the computation of two 
bounding boxes with minimal area requires O(nlog n) steps for n geometry points. That may be a crucial point for ge-
ometries with large amounts of geometry points. In this paper, we introduce an approximation that requires O(n) steps but 
only produces approx. 11% more false hits compared to the theoretical optimum. 
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1. INTRODUCTION 

Bounding boxes are a simple and efficient tool to speed up geometric or spatial operations. For two dimen-
sions, a bounding box (often called Minimal Bounding Rectangle) is the smallest rectangle that encloses a 
geometry such as a polygon or line string (fig. 1a). Although bounding boxes may have more dimensions, 
two dimensions are sufficient for typical spatial queries for geo objects on the Earth's surface used by reverse 
geocoding, map painting or queries in current location-based services. 

Bounding boxes provide only a rough approximation, but there exist efficient a priori checks for spatial 
properties. For example, if two geometries overlap, their bounding boxes overlap as well. Obviously, the 
other direction is not always true. Thus, we can use bounding boxes to check quickly whether or not some 
properties could potentially be true. If the bounding boxes pass the check, the corresponding exact geometry 
checks may fail, so bounding boxes can only reduce the set of candidates. Since an exact geometric test (e.g. 
if polygons overlap) may be time consuming, one goal is to have a small candidate set. Unfortunately for 
some spatial objects the bounding box area is very large compared to the original geometry. Line objects 
such as rivers or roads, in particular, may generate very large bounding boxes. 

One way to reduce the candidate set is to reduce the surface area of the approximating construction. The 
better the approximation of a geometry, the lower is the number of false positive hits by a priori checks. To 
both retain the idea of bounding boxes and to simultaneously reduce the candidate set, we suggest Double 
Bounding Boxes (DBBs, fig. 1b). They consist of two simple bounding boxes, which may overlap. The area 
of the double bounding boxes fully encloses the geometry. To distinguish the single bounding box from the 
double bounding boxes described in this paper, we call the traditional box Single Bounding Box (SBB). 

The greatest benefit have DBBs with a minimal total area. For the construction of such DBBs, there exists 
an algorithm which requires O(nlog n) steps for n geometry points (Roth, 2011). DBBs with minimal areas 
reduce the amount of false positive hits to 47.8% of the single bounding box false hits for typical geo data 
queries. In this paper we introduce an approximation called Quick DBB, that only requires O(n) steps without 
a significant drawback concerning false positive hits for realistic data. 



 

Fig. 1. Single and Double Bounding Boxes and construction ideas 

2. RELATED WORK 

Bounding boxes are used mainly for three purposes: 1. they can be used to speed up spatial comparisons; 2.  
they are used to create metadata of spatial objects; and 3. they may represent objects inside spatial indexes.  

In addition to bounding boxes we have approximating shapes such as circles, ellipses or convex hulls 
(Gartner & Schonherr, 1997, Barequet & Har-Peled, 1999, Hill, 2006, Yang et al., 2008, Welzl, 1991). The 
main goal is to provide a quick a priori test for a spatial condition. If this a priori test is true then it makes 
sense to perform an additional check which is more exact but also more costly. If the a priori test was not 
true, then no further checks are needed.  

A bounding box does not necessarily have to have aligned axes. If a box is rotated, it may be smaller and 
still enclose a geometry. This leads to the construction of Oriented Bounding Boxes (Yuan et al., 2006), often 
used in the area of game engines for collision detection or Optical Character Recognition (OCR). Such boxes 
can be computed using so-called rotating calipers (Toussaint, 1983). We did not follow that approach in this 
paper because it does not suit our intended usage. 

To give an impression of how an aligned bounding box may speed up a test, consider a case where we 
have stored two polygonal geometries A and B. In addition to the polygon's vertices pi, the bounding box is 
also stored, defined by two corners c1, c2 where c1x=min(pix), c1y=min(piy), c2x=max(pix), c2y=max(piy). We 
now could query whether or not A and B overlap, whether A is completely inside B (or vice versa), whether 
A and B only touch (only share a line or point), or whether A and B are disjoint. For each of these geometric 
properties there exists a bounding box test. To test whether the geometries overlap, for example, we check 
overlap(SBBA,SBBB)=cA1xcB2x AND cB1xcA2x AND cA1ycB2y AND cB1ycA2y. Only if this expression is true 
does it make sense to perform the more complex check of whether the polygons overlap exactly. The draw-
back of this approach is the number of successful box checks where the exact test fails (false positives). This 
happens particularly when the actual geometry's area is small compared to the box area. 

It is important to note that the a priori check for aligned bounding boxes (in contrast to oriented bounding 
boxes) can even be processed inside a standard database query. Thus, an approach to use non-spatial data-
bases for spatial objects is to store the box parameters in table columns and the exact geometry as a binary 
large object. Only if the database passes the a priori check, and only then, the geometry is deserialised from 
the table and the exact check is performed (Roth, 2009). 

Instead of a bounding box we could also use a bounding circle, defined by centre cx, cy and radius r. To 
compute an optimal centre (that leads to a minimal r) is not trivial (Elzinga, 1972) and requires a longer 
computation than a bounding box, but there exist approximations (Welzl, 1991, Hearn & Vijay, 1982). Once 
the bounding circle is computed, the overlap a priori test is (cAx-cBx)

2+(cAy-cBy)
2(rA+rB)2 which can also be 

processed inside a standard database query. 
A third approximation shape is the convex hull, which is the minimal convex polygonal area containing 

the original geometry. A convex hull provides a better approximation than a rectangle or a circle. There exist 
algorithms with O(nlog n) complexity to create convex hulls for a given geometry with n vertices, but there 
are also some drawbacks. First, the time to check geometric properties increases with the number of convex 
hull vertices whereas the time for rectangles and circles is always constant. Second, the number of convex 
hull vertices is limited only by the number of vertices of the given geometry and thus may by very high. 
Hastings presents an approach to split convex hulls into multiple convex hulls (called multihulls) to provide a 



better approximation (Hastings, 2009). His main idea is to identify the vertex of the original geometry with 
the largest distance to the convex hull, which is then used to cut the convex hull into two parts. As a result, 
the union of hulls provides an increasingly accurate approximation of the original geometry, with the draw-
back that the time to check geometric properties tends to the time for exact checks. 

The second purpose of bounding boxes is to have a short representation of a spatial object used, for ex-
ample, in metadata records. There often exists a simple string representation of this box that can be used, for 
example, in web pages for URLs or sent by email to identify spatial objects. Some examples: The Dublin 
Core Metadata Initiative (DCMI) (Kunze & Baker, 2007) is an open organization that defines metadata stan-
dards. DCMI provides a box encoding scheme for spatial objects (Cox et al., 2006). The vertical and hori-
zontal spatial extents (which are our bounding boxes) are part of the ISO 19115 Metadata Standard for geo-
graphic information (ISO 19115, 2003). The bounding box (called envelope) is part of the Geography 
Markup Language (GML) (Portele, 2007). 

The last significant role of bounding boxes is to represent a geometry inside spatial indexes. A common 
approach to quickly access geometries is to first approximate the shape of an object by a bounding box that is 
inserted into a tree structure. Common spatial indexes are Quadtrees (Finkel & Bentley, 1974) or variations 
of R-Trees (Guttman, 1984). They mainly differ in how a tree is efficiently built and maintained when ob-
jects are inserted, changed or removed. A query goes down through the tree until an appropriate tree node is 
found. The corresponding bounding box then can be used to identify a (hopefully small) set of candidates that 
must then undergo further geometric checks. 

Very often the shapes of spatial objects do not fill axis-aligned rectangles, thus there is a significant loss 
of shape information. In the following we suggest an approach that approximates arbitrary shapes with the 
help of two bounding boxes. 

3. THE QUICK DBB IDEA 

Using two bounding boxes first seems to be a disadvantage. E.g., for the a priori test if two geometries A, B 
overlap, a single test overlap(SBBA,SBBB) is required. Using DBBs we have four checks: 
overlap(DBBA1,DBBB1) OR overlap(DBBA2,DBBB1) OR overlap(DBBA1,DBBB2) OR overlap(DBBA2,DBBB2) 
Compared to the exact checks the time for box checks can be neglected as they only require few simple num-
ber comparisons. We later show that they significantly reduce the number of candidates for exact checks. 
Before we present the quick algorithm to create DBBs we briefly discuss the theoretical optimum. 

3.1 The exact algorithm 

Fig. 1a shows a traditional SBB. In the following, north (N), south (S), east (E) and west (W) denote the four 
main directions. Our goal is to find two axis-aligned bounding boxes that enclose the geometry (fig. 1b). To 
compute a DBB, it is reasonable to look at the 'inverse' areas. So, we do not look at the covered area of a ge-
ometry, but rather at the empty area in the corners (e.g. the areas (1) and (2) in fig. 1b). For this, we introduce 
so-called void rectangles (fig. 1c): a void rectangle is aligned to the DBB's axes and one corner is an SBB's 
corner. In addition, it touches the geometry, but it does not overlap. DBB and void rectangles have aligned 
borders. For example, the north/west rectangle's east border is aligned to the north/east void rectangle's west 
border. If we respect some additional conditions, we thus can infer DBBs from the void rectangles.  

Fig. 1d demonstrates the idea of generating a void rectangle. The north/east corners of all south/west void 
rectangles reside on a special line string we call the corner profile. To find appropriate void rectangles, we 
have to check corners that touch their corner profile. Note that even if corner profiles have a finite number of 
vertices, we get an infinite number of possible void rectangles, as they may touch the profile at an arbitrary 
position inside a line segment. 

To get a complete list of DBB types, we must answer the following question: Which layout of void rec-
tangles allows the completion of the remaining area by exactly two more rectangles (our DBB)? The system-
atic way to list all cases is to iterate through the possible numbers of void rectangles (fig. 2): 
 1 void rectangle: For any single void rectangle, two more rectangles can always be added to fill the en-

tire space (case A), we have 4 sub-cases: the single void corner can be at NW, NE, SW, SE. 
 



 

Fig. 2. Void rectangle cases 

 2 void rectangles: There exist three cases B, C, and D. Case B has 2 sub-cases: the void rectangles can be 
at NW/SE or NE/SW. Case C has 4 sub-cases: the common border can be at N, S, E, or W. Case D has 4 
sub-cases: the void rectangles can be at NW/SE or NE/SW and they can share the border in direction NS 
or EW. 

 3 void rectangles: There is no way to generate DBBs from three given void rectangles. 
 4 void rectangles: The only chance to generate DBBs from 4 given void rectangles requires every pair of 

neighbor void rectangles to have the same height (east-west neighbors) or the same width (north-south 
neighbors). This is case E. 

 
In summary, there exist 15 cases. The exact algorithm described in (Roth, 2011) iterates through these cases 
and computes the respective largest void rectangles. The overall maximum leads to the minimal DBB. Note 
that for cases C, D, and E, the void rectangles are aligned (e.g. have same heights), thus the algorithm must 
compute the maximum sum area for two or four aligned void rectangles. 

The algorithm uses a plane sweep algorithm that sorts all line segments by their x-coordinate of the left 
vertex. Efficient sorting requires O(nlog n) steps. It requires additional O(n) steps to ensure monotony since 
the sorted line list can be iterated element by element again. In summary, it requires O(nlog n) steps to gen-
erate the four corner profiles. To compute the respective maximum void rectangles then can be performed in 
O(n) steps, thus the overall runtime complexity is O(nlog n). 

3.2 The O(n) approximation 

We can significantly reduce the amount of time to compute void rectangles if we introduce an additional con-
straint: for an SBB with a width to height ratio of s/t we only consider void rectangles with the same ratio of 
w/h = s/t. This means, the void rectangles inner corners reside on the SBB's diagonals (fig. 3a). We call a 
double bounding box based on these void rectangles the Quick Double Bounding Box (QDBB). 

 

 

Fig. 3. Quick approximation idea 

Obviously, the void rectangles usually are not maximal. E.g. two of the three void rectangles in fig. 3a) can 
be extended. We show later that for real geo data this difference to the optimum is acceptable.  

The benefit is that we can compute void rectangles very quickly (fig. 3b). E.g., for the SW void rectangle 
we use the following approach: for each point (px, py) of a geometry do the following: 
 if (px, py) resides in area (1) and px<w assign w = px, h = wt/s; 
 if (px, py) resides in area (2) and py<h assign h = py, w = hs/t. 



For each intersection X=(Xx, Xy) of a geometry's line segment with the diagonal: 
 if Xx<w assign w = Xx, h = Xy. 
 
For the other three void rectangles we perform respective steps. As a great benefit, these steps do not require 
any sorting of the original geometry points, thus can be performed in O(n) steps.  

Fig. 3c) shows the case E of 4 aligned void rectangles. Even though three corners have their own maxi-
mum void rectangle, the smallest rectangle (here SW) determines all corners for case E. In this example, the 
optimal area is not achieved as the two east rectangles are too small. Again, for real data this usually is ac-
ceptable (see section 4). 

3.3 Justification for the void rectangle ratio, worst case considerations 

At first view, the width to height ratio of w/h = s/t seems to be an arbitrary choice, as other ratios e.g. w/h = 1 
could also be considered. The justification for the used ratio is illustrated in fig. 4. 

 

 

Fig. 4. Justification for the specific void rectangle ratio 

The crucial cases are monotonic line geometries that often represent streets or rivers. For w/h = s/t the two 
void rectangles share a corner (fig. 4, left). For this scenario the QDBB that is constructed according to case 
D is very close to the theoretical optimum. If we deviate from this ratio (fig. 4 middle or right), the void rec-
tangles do not construct a DBB as the remaining area cannot be covered by two rectangles, but would require 
three. As a result, ratios of w/h  s/t often produce void rectangles that cannot be represented by any DBB. 

Before the quick algorithm is empirically compared to the exact algorithm we discuss the theoretical 
worst case. We consider case A to illustrate the worst result of the quick DBB algorithm (fig. 5). 

 

 

Fig. 5. Worst case scenario 

The worst case occurs, if the largest void rectangle nearly covers the SBB's width, whereas the QDBB's void 
rectangle is limited by the diagonal corner. The QDBB's area then is  
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whereas the exact DBB area is only 
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The ratio between the QBB area and the optimum is thus 
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For th   the ratio tends to 2. This means, in worst case the QDBB's area has double the size of the opti-
mum. As such, this result is disappointing, but  
 the QDBB's size is smaller compared to the SBB's size AS = st; actually AS/AQ tends to  for th  ; 
 such a scenario virtually never occurs in real data as it requires a very specific pattern. 

 
In the following we provide an evaluation of how good the quick approximation is for real data.  

4. EVALUATION 

We evaluated our approach with the help of the OpenStreetMap database (Ramm & Topf, 2010). We used 
the file 'Germany' which contains approx. 4 mio. areas and line objects (file of Sept. 2010). The first step was 
to measure the creation time for quick DBBs compared to exact DBBs. The DBB algorithms run in Java (SE 
1.6) on a XEON L5506 with 2.13 GHz (Windows Server 2008). Fig. 6 shows the results. 

 

 

Fig. 6. Processing time to create DBBs 

As expected, the measurements approve the runtime behavior of O(n) for the quick approximation and 
O(nlog n) for the exact algorithm. Even though the exact algorithm runs in acceptable time, for geometries 
with large amounts of vertices (e.g. of city or district boundaries), the runtime benefit of the quick algorithm 
is significant. As a result, QDBBs are efficient even for large and fine-grained geometries. 

We now show that the approximation does not lead to significant loss of information. For this, we 
checked the approach for typical spatial queries. Our test queries checked whether stored geo objects overlap 
with randomly generated geometries. We generated five different types of query geometries: lines with four 
points, lines with two points, triangles, rotated rectangles and circles. The circle diameters and line, triangle 
and rectangles sizes randomly ranged from 0 to 5000m. The center, size and orientation of the geometries 
were randomly generated using a uniformly distributed random number. Fig. 7 shows the results.  

For each of the five geometry types we produced 100,000 random geometries. Each of them undergoes an 
overlap check against all geo objects stored in the database. For each geometry type we plot the average 
number of hits against the query geometry size 
 using SBBs for query and geo object geometries, 
 using QDBBs for query and geo object geometries, 
 using exact DBBs for query and geo object geometries, and 
 using an exact overlap check that compares the original geometries. 
 
Line segments produce the lowest numbers of exact hits with a considerable amount of SBB and DBB hits. 
As expected, line segments usually have a poor box approximation, however (Q)DBBs show significantly 
better values than SBBs. For circles the difference between SBB, (Q)DBB and exact hits is small. This is 
because an SBB area is only factor 4/1.27 and a DBB is only (42-2)/1.16 (case E shape) larger than the 
corresponding circle area. Thus boxes already provide a good approximation for circles.  



Fig. 7. Evaluation of approximation quality 

To explore the overall benefit of QDBBs compared to SBBs we introduce the false hit ratio 
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that describes the amount of false SBB candidates compared the false QDBB candidates. A false hit ratio of, 
e.g., 2 means: we get twice as much false SBB candidates compared to QDBBs. 

Fig. 7a) presents the false hit ratios for the five geometry types. The improvement ranges from approx. 
1.5 to 2.9 (average 2.03). This is a great benefit, as QDBBs significantly reduced the number of false candi-
dates compared to SBBs. We roughly get half as much false candidates. 

As in important observation, exact and quick DBBs have very similar hit ratios. In the cases 2-point-lines, 
rectangles and circles, the plots are virtually identical. Only for 4-point-lines and triangles we can detect a 
small loss. In our experiments, QDBBs only produce 10.9% more false hits on average than the exact algo-
rithm. As a major result, QDBBs can replace the exact DBBs in real scenarios without significant drawbacks. 



5. CONCLUSION AND FUTURE WORK 

In this paper we presented an approach to approximate two-dimensional geometries with the help of two 
bounding rectangles. In addition to the optimal algorithm that runs with complexity of O(nlog n), we pre-
sented a quick approximation that requires O(n) steps for n geometry points. For typical geo data the quick 
algorithm only produces 10.9% more false hits. Compared to traditional single bounding boxes, quick DBB 
produce only less than half the amount of false hits, thus the QDBB is a good candidate to replace the tradi-
tional bounding box as the major tool to approximate geometries for a priori geometric checks. 

In the future we want to investigate the benefits of using more than two boxes for approximation with so-
called Multiple Bounding Boxes (MBBs). A first approach reuses QDBBs to recursively segment a geometry. 
A second approach avoids recursion, but requires a quick segmentation algorithm that ideally also runs with 
O(n) steps. 
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