
Moving Geo Databases to Smart Phones –
An Approach for Offline Location-based Applications

Jörg Roth

Department of Computer Science
Univ. of Applied Sciences Nuremberg

Kesslerplatz 12, 90489 Nuremberg, Germany
Joerg.Roth@Ohm-Hochschule.de

Abstract: Mobile location-based services usually access large geo databases via a
wireless network. Sometimes it is useful to store a certain amount of geo objects
on the mobile device. In this paper we present an approach to store geo data in an
embedded SQL database on smart phones. Besides the storage of geometries in
SQL tables we have to provide an efficient geometric indexing mechanism. We
used the Extended Split Index that successfully was used for large server geo data-
bases. Due to the special characteristics of embedded smart phone databases we
have to introduce an extension, the In-Memory Index. Our paper concludes with
performance considerations.

1 Introduction

Applications that take into account a mobile user's current position, so-called location-
based applications, are getting more and more popular. There exist powerful platforms
such as Google Maps that support a developer to present maps and query for nearby
objects. Currently, the typical way to access geo data is to use a central service. As geo
objects produce a huge amount of data (e.g. 10 mio. records for Germany), this data
cannot be easily stored on mobile devices. There exist scenarios, however, where it is
suitable to store at least a subset of geo data on the mobile device and work offline. A
wireless communication link could be too slow or too cost-intensive, or even not avail-
able. We could think about trekking applications that should work in weakly connected
natural environments, services for researchers at archaeological sites or applications that
support emergency services in disaster areas.

Developers of corresponding applications should rely on established storage mechanisms
to save development costs. In this paper we present an approach to store and retrieve geo
data with the help of an embedded SQL database widely available on current smart
phones. As a main challenge, geometric indexing and geometric queries are supported.

2 Related Work

In this paper we only consider vector data, i.e. an object is represented by its polygonal
geometry and further properties such as name and classification. This data type is used if
we want to identify objects that reside at a specific location or that are inside a certain
given area. We can also use vector data to draw a map. The main contribution of a spa-
tial database is a fast processing of geometric queries with the help of a spatial index.
Common spatial indexes are based on trees such as Quadtrees [FB74] or variations of R-
Trees [Gu84]. They first approximate the shape of an object by a bounding box that is
inserted into a tree structure. A query uses the tree to identify a (hopefully small) set of
candidates that have to undergo exact geometric checks. Tree structures have a major
drawback: multiple accesses are required to run through the tree to find appropriated
geometries. An approach that checks a geometric property per object is more suitable for
slow smart phone databases.

Typical spatial databases are Oracle Spatial [Mu09], PostgreSQL/PostGIS [Ne10] or
MySQL Spatial Extensions [Sun11]. The interface to the application developer is SQL,
but to formulate spatial queries different SQL extensions are used. The Open Geospatial
Consortium (OGC) proposed some standards to access spatial extensions. The so-called
Simple Features provide a framework for geometries that include geometry types such as
the Line String or Multi Polygon [He05, He06].

Existing spatial databases use different SQL expressions to create geometric data or
formulate geometric queries. As a main disadvantage, these constructions cannot be
transferred to smart phones. Even though most smart phones platforms support embed-
ded SQL databases, usually SQLite [Kr10], spatial extensions are currently not available
as built-in components.

As an exception, SQL Anywhere provides an additional component that is able to access
spatial data on smart phones [Syb07]. It also comes along with its SQL extension to
define geometry data types and queries. The UltraLite version runs one the mobile plat-
forms Windows Mobile, iPhone and Blackberry. The major focus of SQL Anywhere is
to run enterprise applications that synchronize their data with mobile devices. It thus is
not suitable for small and inexpensive Apps, that turn out to be the major basis for future
location-based applications.

3 The Extended Split Index

The main goal of our approach is to use a standard SQL database to store geo objects
and to execute geometric queries. This is an important prerequisite to use this approach
on smart phones as they locally only support a non-spatial standard database. Figure 1
shows the dataflow to execute a database query.

The application can perform standard queries in a traditional way using the SQL inter-
face. Only if an application is interested in geometries, our components are involved:

Figure 1: Data flow for geometric queries

 The Index Condition Generation transforms a geometric condition such as "inside a
given polygon" into an SQL index condition according to our Extended Split Index
approach (see section 3.1).

 The Well-known Binary to Geometry Object Mapping reads geometries from the
database. As standard SQL does not support geometric values, they are stored as Bi-
nary Large Object (BLOP). The established format Well-Known Binary (WKB) is
used [He05]. This format can easily be transformed into geometry objects in the ap-
plication's objects space.

 The Exact Geometric Check is required as the SQL index condition produces a
superset of results. Only rectangle conditions ("inside a given rectangle") can fully
be processed inside the SQL query as complex polygonal conditions would require
the database to fully interpret the set of geometries.

The components inside the Access Lib are very small (19 kB binary) and linked to the
application. Currently, we support applications developed in Java, but other program-
ming languages are conceivable. For exact geometric checks, we use the Java Topology
Suite (JTS) [Aq03] that fully supports the OGC Simple Features.

3.1 Mapping of Geometries to 1-dimensional Indexes

Our spatial index, called the Extended Split Index [Ro09] has the following properties:

 An index value is stored in the geo object's data row and only depends on its geome-
try. This is an important difference to spatial indexes that base on trees, where a
certain index value is influenced by multiple geo objects.

 Every geometric query is executed by a single standard SQL query.

 The spatial index is mapped to a standard SQL column index (i.e. a non-spatial
index). We heavily rely on the efficiency of Integer indexes inside the database to
speed up geometric queries.

 The set of candidates retrieved by the spatial index is sufficiently small.

Our index covers two dimensional finite areas (x0…xmax, y0…ymax). Three dimensions are
conceivable, but not discussed in this paper. To, e.g., store world-wide geographic data,
we would use latitude/longitude coordinates. Figure 2 illustrates the concept.

Figure 2: Mapping of numbers to tiles

Planes with numbers 0…p-1 cover the area with different resolutions. Planes are divided
into tiles using either horizontal or vertical separators. The basic idea is to uniquely map
integer numbers z to tiles of the covered area. This mapping has some similarities to the
z-curve [TH81], but where the z-curve maps a single geometry to a single tile, we map a
single geometry to all intersecting tiles of different planes.

For a tile number z the corresponding plane has a number i=log2(floor2(z))� where
floor2(z) denotes the largest power of 2 not greater than z; the lower left tile of this plane
has the number z0=floor2(z). To map locations we need an auxiliary function interleave:
for a number n with binary representation (nmnm-1… n3n2n1n0)2 we get interleave0(n)=(nm-

1…n2n0)2 and interleave1(n)=(nm…n3n1)2. A tile location is

)()(22mod zfloorzinterleavezind ix ,

)()(22mod)1(zfloorzinterleavezind iy
(1)

As point-like objects have no size, their tile numbers always reside on plane p-1. To map
a coordinate x, y on the tile number z on a plane i we simply have to perform a mapping
to indx, indy and reverse formula (1). For a non-point geometry we first create the
bounding rectangle of the geometry and map two opposite corners of the bounding rec-
tangle to individual z-values z0, z1. The tile number z of the geometry is the longest
common binary prefix of z0 and z1.

An important advantage: for a given tile index z we get all bigger tiles that enclose this
tile by the simple set

 1,...8,4,2 zzz (2)

where denotes rounding off. On the other hand, smaller tiles inside a given tile z have
the numbers

 ...78,...8 34,...4 12 ,2 zzzzzz (3)

These sets are simple to compute and can be expressed by one-dimensional interval
conditions inside a single SQL query. We want, e.g., to find all cities in Bavaria with
less than 100 000 inhabitants. Let's assume the tile number of the border of Bavaria is
z=55 and we have 8 planes (i.e. tile numbers 1…255). Let IND be the name of the index
column that holds the z values. The resulting SQL query then is

SELECT * FROM CITIES WHERE INHABITANTS<100000 AND
 (IND=55 OR IND BETWEEN 110 AND 111 OR IND BETWEEN 220 AND 223)

The first line contains the non-geometric condition; the second line the conditions ac-
cording to formula (3). The second line is automatically created by the component Index
Condition Generation. To speed up the query processing, IND is an index column inside
the database.

Depending on the geometric query, the index expression is different. The three most im-
portant queries are:

 WITHIN: retrieve all geo objects that are completely inside a given geometry. For
this query, z and the numbers of embedded tiles according to formula (3) are used.

 INTERSECTS: retrieve all geo objects that intersect with a given geometry. Here,
we use z and tile numbers according to formulas (2) and (3).

 CONTAINS: retrieve all geo objects that fully enclose the given geometry. Only z
and tiles according to formula (2) are used.

Again note that the index expression provides a superset of hits. Exact conditions, e.g. if
a result is completely inside a given polygon, have to be checked later.

3.2 Shifted Index and Performance Considerations

Until now we still have a problem: even small geometries have a small tile number, if
they intersect separators with low plane indexes. E.g., all objects intersecting the equator
have z=1, even very small objects. Such objects lead to a constant amount of candidates
for all queries as they always have to undergo the exact geometric check.

As a solution we use two shifted indexes, each of it computes its own z number. One
index uses the given coordinates, where the second index adds a fix coordinate offset.
The specific offset ensures that not both indexes simultaneously generate low z numbers.
For queries, we create index conditions for both indexes, combined by AND, thus the
higher z number has the largest impact to reduce the candidate set.

To find an appropriate offset is not a trivial task. In [Ro09] we made an in-depth analysis
to find out optimal values. The best results generate offsets of 1/6 and 1/12 of the area
size. For real data, the offset of 1/6 increases the average maximum plane number by 2
and effectively avoids the problem of low tile numbers.

Our geo data is based on Open Street Map [OSM11]. A complex import chain [Ro10]
solves some problems of the original data that have certain geometric and topological
shortcomings and only a weak classification.

Our database server (Windows Server 2008) with 10 mio. objects has a maximum query
time of less than 200 ms even for large result sets. For random queries, 97% of the hits
given by the SQL statement fulfill the geometry conditions, thus only 3% are false posi-
tive hits [Ro10] detected by the exact geometric check.

We now want to transfer this approach to smart phone databases.

4 The Extended Split Index on Smart Phones

To transfer the idea of the Extended Split Index to a smart phone platform seemed to be
easy at first view. As target platform we selected Android. As the entire index mecha-
nism is coded in Java, it could easily be transferred into an Android Java project. How-
ever, there were important differences:

 The database interface JDBC is not available on the Android platform. Instead,
Android uses an own interface that is tailored to the SQLite database system.

 We cannot use JTS as geometry library and have to use a much simpler library that
does not support the huge variety of geometric types and functions. Even though all
required geometries can be stored and retrieved, we can only use bounding rectan-
gles as query geometry. For most location-based applications this is sufficient.

From the server database we can select a geometric region (e.g. a polygonal area that
encloses a city) and a list of object types (e.g. only roads, only points of interests). All
matching objects are then exported to an embedded database file that can be stored on
the Android's SD card. The database file has exactly the same table structure as the
original server table; especially all geometries (points, line strings and polygons) are
supported and stored as Well-known Binary.

4.1 A First Approach

To get an impression about the efficiency of the Extended Split Index on a real smart
phone we conducted a number of performance tests on a Milestone (550 MHz ARM)
with Android 2.1. We used three sizes of database exported from all geo objects of a
larger town in Germany: 1. a district of the town (approx. 8000 objects), 2. the inner part
of the town (approx. 25000 objects) and 3. the whole town including suburbs (80000 ob-
jects). The exported databases contain all geometric types (point, line string and poly-
gon) and all available object types. Note that a typical application would limit the object
types to the application-specific domain, thus the geo databases would be much smaller
in reality.

We created 20000 random queries. The query geometry was a random rectangle with a
size between 250m x 250m and 500m x 500m. The query selects all objects in the data-
base that are contained in the query rectangle.

Typical database queries contain a preparation phase (e.g. to define the SELECT state-
ment) and a phase when the application iterates through the result set with a database
cursor. We measured both times. Table 1 shows the results.

Table 1: Average query time (in ms) for the first approach

Database District in town
(8 000 objects)

Inner part of the town
(25 000 objects)

Whole town
(83 000 objects)

Preparation time 12.1 11.7 34.5
Cursor time 177.7 1048.5 10779.9

Time total 189.8 1060.2 10814.4

This result was disappointing. Whereas for the small database, the total query time was
acceptable, for the medium and larger database we got unacceptably long query times.

To explain this drawback, we have to consider the difference between the database sys-
tems. Whereas on the server, we have a traditional database (PostGres), on the Android
device we only have an embedded database. This means: the entire database processing
is done by the application that mainly accesses a single file. The main effects are: 1. very
limited ability to cache indexing structures and 2. reading the results always means to
iterate through a file. Even though the file system allows jumping to specific blocks of
the file, additional parts of the file are transferred to the memory and utilize bandwidth.

4.2 Moving the Index into the Memory

The results above were discouraging. The Extended Split Index heavily bases on the
efficiency of Integer index columns supported by the SQL database. As the embedded
database has certain limitations regarding index columns, we got no significant speed up
of geometric queries. However, we can save the idea if we move the indexing structure
from the database into the application memory. We call this the In-Memory Index (IMI),
presented in figure 3.

Figure 3: Structure of the In-Memory Index

The processing steps to execute a query are:

 We map the query geometry to tile numbers according to sections 3.1 and 3.2 (e.g.
the number z and all numbers of embedded tiles, for index and shifted index).

 The list of tile numbers is used as array indexes of Index1 and (shifted) Index2.
For each of the two we get multiple arrays ObjectIDs that are joined to two sepa-
rate lists.

 We intersect these two lists. As a result we get a list of object IDs that can be used
to query the database. This SQL query directly uses the primary object key (using
SELECT … WHERE ID IN (ID1,…, IDx))

One could argue that for the last step we again rely on an Integer index column. But in
contrast to the statement in section 3.1, this statement directly accesses IDs without BE-
TWEEN… and OR…. This significantly speeds up the query. The entire IMI can be pre-
computed during the database export on a host system and thus the creation does not
affect the smart phone.

Some words about the runtime complexity to compute the list of IDs. Let z be the ge-
ometry's tile number that resides at plane i; we have 2i tiles on a plane. Thus we have
floor2(z) tiles on the plane of tile z. Let further denote n the total number of geo objects.
We now assume a WITHIN query.

We can statistically show that for typical geo data, the number of objects are nearly
equally distributed across the planes (not tiles). Thus the list ObjectIDs has an aver-
age size of

g(z) =
)(2 zfloorp

n

 (4)

We have to additionally consider the objects inside embedded tiles. As the embedded
tiles have approximately ½, ¼ etc. objects compared to tile z, we can estimate the total
number of objects retrieved by one index by

g*(z) =2
)(2 zfloorp

n

 (5)

The most time consuming part is to intersect the two object lists from shifted indexes. As
the object IDs are only partly sorted, this requires O((g*

1+g*
2)· log(g*

1+g*
2)) steps.

Larger values of p lead to quicker computations, but also to larger arrays Index1 and
Index2. Experiments show that p=16 is an adequate value that balances speed and
memory usage. The value of z only depends on the actual query geometry thus cannot be
estimated beforehand. For a specific z and fix p the runtime complexity therefore is
O(n·log n).

If we assume 4 bytes for a pointer, the IMI requires (2p-1)4 bytes for references to the
arrays ObjectIDs. As each geo object ID only occurs in a single array ObjectIDs,
we have a total of n entries. As we have two shifted indexes, the IMI requires a total of
8(n+2p-1) bytes. For, e.g., our town database using 16 planes this results in 1.1 Mbytes.
The Android's typical heap size for Apps is 24 Mbytes, thus the required amount of
memory for the IMI is acceptable.

4.3 Performance Measurements

We used the performance measurements above (section 4.1) to test our IMI approach.
Table 2 shows the results.

Table 2: Average query time (in ms) using the In-Memory Index

Database District in town
(8 000 objects)

Inner part of the town
(25 000 objects)

Whole town
(83 000 objects)

Preparation time 227.5 304.4 580.3
Cursor time 92.9 90.0 238.8

Time total 320.4 394.4 819.0

The IMI significantly speeds up the cursor time but now requires a longer preparation
time. For the small database the total time is even longer compared to the pure SQL
query. But for larger databases, the IMI leads to acceptable average times.

In a second step we analyzed how the query time is affected by the result size. For query
tests described above, 90% of the results have a size with less than 20 hits. Figure 4
shows, how the total time depends on the result size.

Figure 4: Query times (in ms) using the In-Memory Index

Not surprisingly, the query time increases for larger results. For the large database, the
time goes up to approx. 2s that can be considered as critical for some applications. We
still have to keep in mind that for a specific application the corresponding database does
not contain all geo objects of, e.g. a town, but only a small subset. Thus the databases for
certain applications are usually far smaller than in our tests.

5 Summary and Future Work

In this paper we presented an approach that allows a smart phone application to locally
access geo data without the need to query across the network. This can be useful, if net-
work costs are too high or a mobile network is not available. To speed up geometric
queries we used the Extended Split Index approach that already successfully works in
our huge server geo database.

If we transfer an approach to a smart phone we have to scale down our expectations. We
showed that a naïve re-implementation of the Extended Split Index on the smart phone
platform has important performance drawbacks due to a different database implementa-
tion. We thus presented an additional approach that uses an In-Memory Index. Even
though the query execution time is far behind the server performance, for certain appli-
cation scenarios it is acceptable. As a major benefit of our approach, an application de-
veloper can use established access mechanisms (especially SQL) to access and query
data. This saves development costs.

Bibliography

[Aq03] Aquino, J.: JTS Topology Suite. Technical Specifications, Vivid Solutions, 2003.
[FB74] Finkel, R.; Bentley; J.L.: Quad Trees: A Data Structure for Retrieval on Composite

Keys. Acta Informatica 4 (1): 1974; pp. 1–9.
[Gu84] Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. of the

1984 ACM SIGMOD International Conference on Management of Data, Boston,
Massachusetts, June 1984; pp. 47-57.

[He05] Herring, J. (ed.): OpenGIS® Implementation Specification for Geographic information -
Simple feature access - Part 1: Common architecture, OGC, 2005.

[He06] Herring, J. (ed.): OpenGIS Implementation Specification for Geographic information -
Simple feature access - Part 2: SQL option, OGC, 2006.

[Kr10] Kreibich, J. A.: Using SQLite O'Reilly, 2010.
[Mu09] Murray, C.: Oracle Spatial Developer's Guide. Oracle, June 2009.
[Ne10] Neufeld, K.: PostGIS Manual, 2010.
[OSM11] OpenStreetMap, excerpts for Europe, http://download.geofabrik.de/osm/, 2011.
[Ro09] Roth, J.: The Extended Split Index to Efficiently Store and Retrieve Spatial Data With

Standard Databases, IADIS Intern. Conf. Applied Computing 2009, Rome, Nov. 19-21
2009; pp. 85-92.

[Ro10] Roth, J.: Übernahme von Geodatenbeständen aus Open Street Map und Bereitstellung
einer effizienten Zugriffsmöglichkeit für ortsbezogene Dienste Praxis der Informations-
verarbeitung und Kommunikation (PIK), Vol. 13, Heft 4, 2010; pp. 268-277.

[Sun11] Sun: MySQL 5.5 Reference Manual. Sun Microsystems, 2011.
[Syb07] Sybase iAnywhere: UltraLite Database Management Reference, March 2007.
[TH81] Tropf, H.; Herzog, H.: Multidimensional Range Search in Dynamically Balanced Trees.

Applied Informatics, 2/1981, Vieweg, Germany, 1981; pp. 71–77.

