An O(n) Approximation for the Double Bounding Box Problem

Jörg Roth
Computer Science Department
University of Applied Sciences Nuremberg Germany

Bounding Boxes

Bounding boxes approximate arbitrary 2D geometries

- computer graphics
- simulation, games
- spatial indexes

Here

- axis-aligned bounding boxes

Benefits

- Easy to compute in $\mathrm{O}(n)$

- Simple, quick a-priori test for geometric conditions (e.g. 'is inside', 'overlaps') in $\mathrm{O}(1)$

Idea: Double Bounding Boxes

False hits require exact (costly) geometric checks. Our idea:

- We use two bounding boxes to better approximate a shape
- They may overlap
- They should have a minimal area
- Also O(1) geometric a-priori checks
\rightarrow Double Bounding Boxes, DBB
(we call the traditional one the Single Bounding Box, SBB)

DBBs

DBBs approximate a shape much better (fewer false hits)

Rothenbach

Exact DBBs

There exists an algorithm that computes the minimal DBB:

- Publication:

Jörg Roth: The Approximation of Two-Dimensional Spatial Objects by Two Bounding Rectangles
Spatial Cognition \& Computation: An Interdisciplinary Journal, Vol. 11, Issue 2, 2011, ISSN 1387-5868, 129-152

- The algorithm computes the theoretical minimum
- Requires $\mathrm{O}(n \cdot \log n)$ steps for n geometry points
- Reason: computing the corner profiles needs a kind of sorting

Quick DBBs

Our new idea:

- We replace the $\mathrm{O}(n \cdot \log n)$ algorithm to compute maximum void rects by an $\mathrm{O}(n)$ approximation
- The rest of the algorithm remains unchanged, i.e.

```
iterate through all 15 sub-cases {
    generate the maximum void rectangle(s) that fulfil(s)
            the conditions related to this case;
    sum up the void rectangle areas;
    if (sum of areas > area of the previous best solution)
        store as the new best solution;
}
return the best solution;
```


Quick DBBs

Approximation for void rects:

- We do not consider maximum void rects, but only sub-maxima that have the SBB's aspect ratio, i.e.

$$
\frac{w}{h}=\frac{s}{t}
$$

- Not the maximum, but easy to compute
- Note: with other aspect ratios the void rects often do not construct DBBs

Quick DBBs

Quick void rect construction:

Runtime measurements

Comparison QDDB runtime to exact DBB

QDBB worst case

Worst case considerations:

- Area ratio between QDBB and exact DBB:

$$
\frac{A_{Q}}{A_{E}}=\frac{s \cdot\left(t-h^{2} / t\right)}{s \cdot(t-h)}=\frac{h+t}{t}
$$

- Boundary value is 2 , i.e. in worst case the QDBB area has twice the size of the theoretical value

Measurements with real data

The difference between QDBB and exact DBB is small in reality:

- QDDB produce only 10.9% moreffalse hits than the theoretically optimal DBB

But:

- The SBB produces 2.03 times morefalse hits than the QDBB!
- This means: SBBs produce twice as much (costly) exact geometric checks than QDBBs

Summary

- DBBs are more suitable than SBBs to approximate real geometries
- The quick approximation only requires O(n) steps
- Worst case: 2 times larger areas
- Real data: nearly as good as the theoretical optimum
fussweg_25012789

Contact

Jörg Roth

Univ. of Applied Sciences Nuremberg

JJoerg.Roth@Ohm-hochschule.de
© http://www.wireless-earth.org

